ﻻ يوجد ملخص باللغة العربية
We study the Wigner function for massive spin-1/2 fermions in electromagnetic fields. Dirac form kinetic equation and Klein-Gordon form kinetic equation are obtained for the Wigner function, which are derived from the Dirac equation. The Wigner function and its kinetic equations are expanded in terms of the generators of Clifford algebra and a complicated system of partial differential equations is obtained. We prove that some component equations are automattically satisfied if the rest ones are fulfilled. In this thesis two methods are proposed for calculating the Wigner function, which are proved to be equivalent. The Wigner function is analytically calculated following the standard second-quantization procedure in the following cases: free fermions with or without spin imbalance, in constant magnetic field, in constant electric field, and in constant parallel electromagnetic field. Strong-field effects, such as the Landau levels and Schwinger pair-production are reproduced using the Wigner function approach. For an arbitrary space-time dependent field configuration, a semi-classical expansion with respect to the reduced Plancks constant $hbar$ is performed. We derive general expressions for the Wigner function components at linear order in $hbar$, in which order the spin corrections start playing a role. A generalized Bargmann-Michel-Telegdi (BMT) equation and a generalized Boltzmann equation are obtained for the undetermined polarization density and net fermion number density, which can be used to construct spin-hydrodynamics in the future. We also make a comparison between analytical results and the ones from semi-classical expansion, which shows coincidence for weak electromagnetic fields and small spin imbalance.
We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32
In scattering theory, the unitary limit is defined by an infinite scattering-length and a zero effective range, corresponding to a phase-shift pi/2, independent of energy. This condition is satisfied by a rank-1 separable potential V(k,k)=-v(k)v(k) w
The structure of few-fermion systems having $1/2$ spin-isospin symmetry is studied using potential models. The strength and range of the two-body potentials are fixed to describe low energy observables in the angular momentum $L=0$ state and spin $S=
Fluid of spin-1/2 fermions is represented by a complex scalar field and a four-vector field coupled both to the scalar and the Dirac fields. We present the underlying action and show that the resulting equations of motion are identical to the (hydrod
We derive Boltzmann equations for massive spin-1/2 fermions with local and nonlocal collision terms from the Kadanoff--Baym equation in the Schwinger--Keldysh formalism, properly accounting for the spin degrees of freedom. The Boltzmann equations are