ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum marginal independence problem

77   0   0.0 ( 0 )
 نشر من قبل Sergio Hern\\'andez-Cuenca
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate whether the presence or absence of correlations between subsystems of an N-partite quantum system is solely constrained by the non-negativity and monotonicity of mutual information. We argue that this relatively simple question is in fact very deep because it is sensitive to the structure of the set of N-partite states. It can be informed by inequalities satisfied by the von Neumann entropy, but has the advantage of being more tractable. We exemplify this by deriving the explicit solution for N=4, despite having limited knowledge of the entropic inequalities. Furthermore, we describe how this question can be tailored to the analysis of more specialized classes of states such as classical probability distributions, stabilizer states, and geometric states in the holographic gauge/gravity duality.



قيم البحث

اقرأ أيضاً

One of the basic distinctions between classical and quantum mechanics is the existence of fundamentally incompatible quantities. Such quantities are present on all levels of quantum objects: states, measurements, quantum channels, and even higher ord er dynamics. In this manuscript, we show that two seemingly different aspects of quantum incompatibility: the quantum marginal problem of states and the incompatibility on the level of quantum channels are in many-to-one correspondence. Importantly, as incompatibility of measurements is a special case of the latter, it also forms an instance of the quantum marginal problem. The generality of the connection is harnessed by solving the marginal problem for Gaussian and Bell diagonal states, as well as for pure states under depolarizing noise. Furthermore, we derive entropic criteria for channel compatibility, and develop a converging hierarchy of semi-definite programs for quantifying the strength of quantum memories.
In this paper, we present a method to solve the quantum marginal problem for symmetric $d$-level systems. The method is built upon an efficient semi-definite program that determines the compatibility conditions of an $m$-body reduced density with a g lobal $n$-body density matrix supported on the symmetric space. We illustrate the applicability of the method in central quantum information problems with several exemplary case studies. Namely, (i) a fast variational ansatz to optimize local Hamiltonians over symmetric states, (ii) a method to optimize symmetric, few-body Bell operators over symmetric states and (iii) a set of sufficient conditions to determine which symmetric states cannot be self-tested from few-body observables. As a by-product of our findings, we also provide a generic, analytical correspondence between arbitrary superpositions of $n$-qubit Dicke states and translationally-invariant diagonal matrix product states of bond dimension $n$.
80 - Cencheng Shen 2020
A number of universally consistent dependence measures have been recently proposed for testing independence, such as distance correlation, kernel correlation, multiscale graph correlation, etc. They provide a satisfactory solution for dependence test ing in low-dimensions, but often exhibit decreasing power for high-dimensional data, a phenomenon that has been recognized but remains mostly unchartered. In this paper, we aim to better understand the high-dimensional testing scenarios and explore a procedure that is robust against increasing dimension. To that end, we propose the maximum marginal correlation method and characterize high-dimensional dependence structures via the notion of dependent dimensions. We prove that the maximum method can be valid and universally consistent for testing high-dimensional dependence under regularity conditions, and demonstrate when and how the maximum method may outperform other methods. The methodology can be implemented by most existing dependence measures, has a superior testing power in a variety of common high-dimensional settings, and is computationally efficient for big data analysis when using the distance correlation chi-square test.
Bells theorem is often said to imply that quantum mechanics violates local causality, and that local causality cannot be restored with a hidden-variables theory. This however is only correct if the hidden-variables theory fulfils an assumption called Statistical Independence. Violations of Statistical Independence are commonly interpreted as correlations between the measurement settings and the hidden variables (which determine the measurement outcomes). Such correlations have been discarded as finetuning or a conspiracy. We here point out that the common interpretation is at best physically ambiguous and at worst incorrect. The problem with the common interpretation is that Statistical Independence might be violated because of a non-trivial measure in state space, a possibility we propose to call supermeasured. We use Invariant Set Theory as an example of a supermeasured theory that violates the Statistical Independence assumption in Bells theorem without requiring correlations between hidden variables and measurement settings.
The PT-symmetric (PTS) quantum brachistochrone problem is reanalyzed as quantum system consisting of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this specific setup as subsystem of a larger Hermitian sy stem, we find non-unitary operator equivalence classes (conjugacy classes) as natural ingredient which contain at least one Dirac-Hermitian representative. With the help of a geometric analysis the compatibility of the vanishing passage time solution of a PTS brachistochrone with the Anandan-Aharonov lower bound for passage times of Hermitian brachistochrones is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا