Holographic entanglement entropy and the first law of thermodynamics are believed to decode the gravity theory in the bulk. In particular, assuming the Ryu-Takayanagi (RT)cite{ryu-takayanagi} formula holds for ball-shaped regions on the boundary around CFT vacuum states impliescite{Nonlinear-Faulkner} a bulk gravity theory equivalent to Einstein gravity through second-order perturbations. In this paper, we show that the same assumptions can also give rise to second-order Lovelock gravity. Specifically, we generalize the procedure in cite{Nonlinear-Faulkner} to show that the arguments there also hold for Lovelock gravity by proving through second-order perturbation theory, the entropy calculated using the Wald formulacite{Wald_noether} in Lovelock also obeys an area law (at least up to second order). Since the equations for second-order perturbations of Lovelock gravity are different in general from the second-order perturbation of the Einstein-Hilbert action, our work shows that the holographic area law cannot determine a unique bulk theory even for second-order perturbations assuming only RT on ball-shaped regions. It is anticipated that RT on all subregions is expected to encode the full non-linear Einstein equations on asymptotically AdS spacetimes.