ﻻ يوجد ملخص باللغة العربية
We illustrate connections between differential geometry on finite simple graphs G=(V,E) and Riemannian manifolds (M,g). The link is that curvature can be defined integral geometrically as an expectation in a probability space of Poincare-Hopf indices of coloring or Morse functions. Regge calculus with an isometric Nash embedding links then the Gauss-Bonnet-Chern integrand of a Riemannian manifold with the graph curvature. There is also a direct nonstandard approach: if V is a finite set containing all standard points of M and E contains pairs which are infinitesimally close in the sense of internal set theory, one gets a finite simple graph (V,E) which gets a curvature which as a measure corresponds to the standard curvature. The probabilistic approach is an umbrella framework which covers discrete spaces, piecewise linear spaces, manifolds or varieties.
We study the effect of the Gauss-Bonnet term on vacuum decay process in the Coleman-De Luccia formalism. The Gauss-Bonnet term has an exponential coupling with the real scalar field, which appears in the low energy effective action of string theories
In this paper, we define a Hopf algebra structure on the vector space spanned by packed words using a selection-quotient coproduct. We show that this algebra is free on its irreducible packed words. Finally, we give some brief explanations on the Maple codes we have used.
We construct boson stars in (4+1)-dimensional Gauss-Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate these in detail. While the thick wall limit is independent of the value of the Gauss-
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit a
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure E