ﻻ يوجد ملخص باللغة العربية
We propose an innovative quantum emulator based on Moire superlattices showing that, by employing periodical modulation on each lattice site, one can create tunable, artificial gauge fields with imprinting Peierls phases on the hopping parameters and realize an analog of novel Haldane-like phase. As an application, we provide a methodology to directly quantify the topological invariant in such a system from a dynamical quench process. This design shows a robustly integrated platform which opens a new door to investigate topological physics.
We propose an experimental scheme to realize the valley-dependent gauge fields for ultracold fermionic atoms trapped in a state-dependent square optical lattice. Our scheme relies on two sets of Raman laser beams to engineer the hopping between adjac
This article is a report of Projet bibliographique of M1 at Ecole Normale Superieure. In this article we reviewed the historical developments in artificial gauge fields and spin-orbit couplings in cold atom systems. We resorted to origins of literatu
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{
We consider a system of weakly interacting bosons confined on a planar double ring lattice subjected to two artificial gauge fields. We determine its ground state by solving coupled discrete non-linear Schrodinger equations at mean field level. At va
We study three-leg-ladder optical lattices loaded with repulsive atomic Bose-Einstein condensates and subjected to artificial gauge fields. By employing the plane-wave analysis and variational approach, we analyze the band-gap structure of the energy