ﻻ يوجد ملخص باللغة العربية
According to Harlow and Hayden [arXiv:1301.4504] the task of distilling information out of Hawking radiation appears to be computationally hard despite the fact that the quantum state of the black hole and its radiation is relatively un-complex. We trace this computational difficulty to a geometric obstruction in the Einstein-Rosen bridge connecting the black hole and its radiation. Inspired by tensor network models, we conjecture a precise formula relating the computational hardness of distilling information to geometric properties of the wormhole - specifically to the exponential of the difference in generalized entropies between the two non-minimal quantum extremal surfaces that constitute the obstruction. Due to its shape, we call this obstruction the Pythons Lunch, in analogy to the reptiles postprandial bulge.
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its comp
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawkin
We show that for the thermal spectrum of Hawking radiation black holes information loss paradox may still be present, even if including the entanglement information stored in the entangled Minkowski vacuum. And to avoid this inconsistency, the spectr
We consider the island formula for the entropy of subsets of the Hawking radiation in the adiabatic limit where the evaporation is very slow. We find a simple concrete `on-shell formula for the generalized entropy which involves the image of the isla
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- c