ﻻ يوجد ملخص باللغة العربية
Diffusion-weighted magnetic resonance imaging (dMRI) allows non-invasive investigation of whole-brain connectivity, which can potentially help to reveal the brains global network architecture and abnormalities involved in neurological and mental disorders. However, the reliability of connection inferences from dMRI-based fiber tracking is still debated, due to low sensitivity, dominance of false positives, and inaccurate and incomplete reconstruction of long-range connections. Furthermore, parameters of tracking algorithms are typically tuned in a heuristic way, which leaves room for manipulation of an intended result. Here we propose a data-driven framework to optimize and validate parameters of dMRI-based fiber-tracking algorithms using neural tracer data as a reference. Japans Brain/MINDS Project provides invaluable datasets containing both dMRI and neural tracer data from the same primates. We considered four criteria for goodness of fiber tracking: distance-weighted coverage, true/false positive ratio, projection coincidence, and commissural passage, applied using a multi-objective optimization algorithm. We implemented a variant of non-dominated sorting genetic algorithm II (NSGA-II) to optimize five major parameters of a global fiber-tracking algorithm over multiple brain samples in parallel. Using optimized parameters compared to the default parameters, dMRI-based fiber tracking performance was significantly improved, while minimizing false positives and impossible cross-hemisphere connections. Parameters optimized for 10 tracer injection sites showed good generalization capability for other brain samples. These results demonstrate the importance of data-driven adjustment of fiber-tracking algorithms and support the validity of dMRI-based tractography, if appropriate adjustments are employed.
The integrity of articular cartilage is a crucial aspect in the early diagnosis of osteoarthritis (OA). Many novel MRI techniques have the potential to assess compositional changes of the cartilage extracellular matrix. Among these techniques, diffus
Deep learning models have had a great success in disease classifications using large data pools of skin cancer images or lung X-rays. However, data scarcity has been the roadblock of applying deep learning models directly on prostate multiparametric
Cross-term spatiotemporal encoding (xSPEN) is a recently introduced imaging approach delivering single-scan 2D NMR images with unprecedented resilience to field inhomogeneities. The method relies on performing a pre-acquisition encoding and a subsequ
Purpose: To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that leverages non-linear redundancy in the data to boost the SNR while preserving signal information. Methods: We exploit non-linear redundancy of the dMRI da
Fetal cortical plate segmentation is essential in quantitative analysis of fetal brain maturation and cortical folding. Manual segmentation of the cortical plate, or manual refinement of automatic segmentations is tedious and time-consuming. Automati