Sufficient Stability Conditions for Time-varying Networks of Telegraphers Equations or Difference Delay Equations


الملخص بالإنكليزية

We give a sufficient condition for exponential stability of a network of lossless telegraphers equations, coupled by linear time-varying boundary conditions. The sufficient conditions is in terms of dissipativity of the couplings, which is natural for instance in the context of microwave circuits. Exponential stability is with respect to any $L^p$-norm, $1leq pleqinfty$. This also yields a sufficient condition for exponential stability to a special class of linear time-varying difference delay systems which is quite explicit and tractable. One ingredient of the proof is that $L^p$ exponential stability for such difference delay systems is independent of $p$, thereby reproving in a simpler way some results from [3].

تحميل البحث