SAT-Encodings for Treecut Width and Treedepth


الملخص بالإنكليزية

In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters treecut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical research community as they offer the algorithmic advantage over treewidth by supporting so-called fixed-parameter algorithms for certain problems that are not fixed-parameter tractable with respect to treewidth. However, the existing research has mostly been theoretical. A main obstacle for any practical or experimental use of these two width parameters is the lack of any practical or implemented algorithm for actually computing the associated decompositions. We address this obstacle by providing the first practical decomposition algorithms. Our approach for computing treecut width and treedepth decompositions is based on efficient encodings of these decomposition methods to the propositional satisfiability problem (SAT). Once an encoding is generated, any satisfiability solver can be used to find the decomposition. Moreover, we propose new characterisations for treecut width and treedepth that are based on sequences of partitions of the vertex set, a method that was pioneered for clique-width. We implemented and systematically tested our encodings on various benchmark instances, including famous named graphs and random graphs of various density. It turned out that for the considered width parameters, our partition-based SAT encoding even outperforms the best existing SAT encoding for treewidth.

تحميل البحث