ﻻ يوجد ملخص باللغة العربية
Semidefinite programs (SDPs) are standard convex problems that are frequently found in control and optimization applications. Interior-point methods can solve SDPs in polynomial time up to arbitrary accuracy, but scale poorly as the size of matrix variables and the number of constraints increases. To improve scalability, SDPs can be approximated with lower and upper bounds through the use of structured subsets (e.g., diagonally-dominant and scaled-diagonally dominant matrices). Meanwhile, any underlying sparsity or symmetry structure may be leveraged to form an equivalent SDP with smaller positive semidefinite constraints. In this paper, we present a notion of decomposed structured subsets}to approximate an SDP with structured subsets after an equivalent conversion. The lower/upper bounds found by approximation after conversion become tighter than the bounds obtained by approximating the original SDP directly. We apply decomposed structured subsets to semidefinite and sum-of-squares optimization problems with examples of H-infinity norm estimation and constrained polynomial optimization. An existing basis pursuit method is adapted into this framework to iteratively refine bounds.
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th
Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear systems. Chordal decomposition exploits th
We introduce a new framework for unifying and systematizing the performance analysis of first-order black-box optimization algorithms for unconstrained convex minimization. The low-cost iteration complexity enjoyed by first-order algorithms renders t
SOSTOOLS v3.00 is the latest release of the freely available MATLAB toolbox for formulating and solving sum of squares (SOS) optimization problems. Such problems arise naturally in the analysis and control of nonlinear dynamical systems, but also in
This paper deals with the fault detection and isolation (FDI) problem for linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. In this paper, we follow a geometric approach to verify solvability