ﻻ يوجد ملخص باللغة العربية
The effect of pressure on the thermal expansion of solid CH$_4$ is calculated for the low temperature region where the contributions from phonons and librons can be neglected and only the rotational tunnelling modes are essential. The effect of pressure is shown to increase the magnitude of the peaks of the negative thermal expansion and shifts the positions of the peaks to the low-temperature region, which goes asymptotically to zero temperature with increasing pressure. The Gruneisen thermodynamical parameter for the rotational tunnelling modes is calculated. It is large, negative, and increases in magnitude with rising pressure.
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region
The thermal conductivity of solid parahydrogen crystal with methane admixtures has been measured in the temperature range 1.5 to 8 K. Solid samples were grown from the gas mixture at 13 K. Concentration of CH4 admixture molecules in the gas varied fo
MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted therm
The evolution of the magnetic and charge transport properties of itinerant magnetic metal MnSi with the substitution of Al and Ga on the Si site is investigated. We observe an increase in unit cell volume indicating that both Al and Ga substitutions
The particle flux through a two micron diameter orifice into vacuum from a source chamber filled with solid He exhibits a striking periodic behavior similar to that of a geyser. This phenomenon is attributed to a periodic collapse of the solid inside