ﻻ يوجد ملخص باللغة العربية
Inversion symmetry breaking and three-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition metal dichalcogenides (TMDCs), which can be exploited for valleytronics applications. However, the short lifetime of the exciton significantly constrains the possible applications. In contrast, dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence (PL) spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum (PAM) of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ~ 23 meV, based on the experimentally extracted exchange interaction (~ 7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr
Tungsten-based monolayer transition metal dichalcogenides host a long-lived dark exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explor
The optical properties of particularly the tungsten-based transition-metal dichalcogenides are strongly influenced by the presence of dark excitons. Recently, theoretical predictions as well as indirect experimental insights have shown that two diffe
Optical spectroscopy in high magnetic fields $Bleq65$ T is used to reveal the very different nature of carriers in monolayer and bulk transition metal dichalcogenides. In monolayer WSe$_{2}$, the exciton emission shifts linearly with the magnetic fie
The exceptionally strong Coulomb interaction in semiconducting transition-metal dichalcogenides (TMDs) gives rise to a rich exciton landscape consisting of bright and dark exciton states. At elevated densities, excitons can interact through exciton-e