ﻻ يوجد ملخص باللغة العربية
Ancilla systems are often indispensable to universal control of a nearly isolated quantum system. However, ancilla systems are typically more vulnerable to environmental noise, which limits the performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced decoherence, we propose a general framework that integrates quantum control and quantum error correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-independent gate is provided for superconducting circuits with a hardware-efficient design.
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on
We show how the spin independent scattering between two identical flying qubits can be used to implement an entangling quantum gate between them. We consider one dimensional models with a delta interaction in which the qubits undergoing the collision
We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to
We present a general decomposition of the Generalized Toffoli, and for completeness, the multi-target gate using an arbitrary number of clean or dirty ancilla. While prior work has shown how to decompose the Generalized Toffoli using 0, 1, or $O(n)$
Many quantum information protocols require the implementation of random unitaries. Because it takes exponential resources to produce Haar-random unitaries drawn from the full $n$-qubit group, one often resorts to $t$-designs. Unitary $t$-designs mimi