ﻻ يوجد ملخص باللغة العربية
We consider the most general set of integrable deformations extending the $Tbar{T}$ deformation of two-dimensional relativistic QFTs. They are CDD deformations of the theorys factorised S-matrix related to the higher-spin conserved charges. Using a mirror version of the generalised Gibbs ensemble, we write down the finite-volume expectation value of the higher-spin charges, and derive a generalised flow equation that every charge must obey under a generalised $Tbar{T}$ deformation. This also reproduces the known flow equations on the nose.
We introduce an extension of the generalised $Tbar{T}$-deformation described by Smirnov-Zamolodchikov, to include the complete set of extensive charges. We show that this gives deformations of S-matrices beyond CDD factors, generating arbitrary funct
We investigate the $Tbar{T}$ deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the $Tbar{T}$ deforming operator can be constructed
In this paper, we continue the study of $Tbar{T}$ deformation in $d=1$ quantum mechanical systems and propose possible analogues of $Jbar{T}$ deformation and deformation by a general linear combination of $Tbar{T}$ and $Jbar{T}$ in quantum mechanics.
We explore the $Jbar{T}$ and $Tbar{J}$ deformations of two-dimensional field theories possessing $mathcal N=(0,1),(1,1)$ and $(0,2)$ supersymmetry. Based on the stress-tensor and flavor current multiplets, we construct various bilinear supersymmetric
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat