ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending qubit coherence by adaptive quantum environment learning

138   0   0.0 ( 0 )
 نشر من قبل Eleanor Scerri Ms.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Decoherence, resulting from unwanted interaction between a qubit and its environment, poses a serious challenge towards the development of quantum technologies. Recently, researchers have started analysing how real-time Hamiltonian learning approaches, based on estimating the qubit state faster than the environmental fluctuations, can be used to counteract decoherence. In this work, we investigate how the back-action of the quantum measurements used in the learning process can be harnessed to extend qubit coherence. We propose an adaptive protocol that, by learning the qubit environment, narrows down the distribution of possible environment states. While the outcomes of quantum measurements are random, we show that real-time adaptation of measurement settings (based on previous outcomes) allows a deterministic decrease of the width of the bath distribution, and hence an increase of the qubit coherence. We numerically simulate the performance of the protocol for the electronic spin of a nitrogen-vacancy centre in diamond subject to a dilute bath of $^{13}$C nuclear spin, finding a considerable improvement over the performance of non-adaptive strategies.



قيم البحث

اقرأ أيضاً

We experimentally demonstrate over two orders of magnitude increase in the coherence time of nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as non-periodic Uhrig decoupling and has the additional benefit that it allows us to take advantage of revivals in the echo (due to the coherent nature of the bath) to explore the longest coherence times. At short times, we can extend the coherence of particular quantum states out from T_2*=2.7 us out to an effective T_2 > 340 us. For preserving arbitrary states we show the experimental importance of using pulse sequences, that through judicious choice of the phase of the pulses, compensate the imperfections of individual pulses for all input states. At longer times we use these compensated sequences to enhance the echo revivals and show a coherence time of over 1.6 ms in ultra-pure natural abundance 13C diamond.
Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields ap plied to the qubit. Using a solid-state defect spin coupled to a microwave-driven spin bath, we experimentally demonstrate a decoherence mitigation method based on spectral engineering of the environmental noise with a polychromatic drive waveform, and show that it outperforms monochromatic techniques. Results are in agreement with quantitative modeling, and open the path to active decoherence protection using custom-designed waveforms applied to the environment rather than the qubit.
Spins of negatively charged nitrogen-vacancy (NV$^-$) defects in diamond are among the most promising candidates for solid-state qubits. The fabrication of quantum devices containing these spin-carrying defects requires position-controlled introducti on of NV$^-$ defects having excellent properties such as spectral stability, long spin coherence time, and stable negative charge state. Nitrogen ion implantation and annealing enable the positioning of NV$^-$ spin qubits with high precision, but to date, the coherence times of qubits produced this way are short, presumably because of the presence of residual radiation damage. In the present work, we demonstrate that a high temperature annealing at 1000$^circ$C allows 2 millisecond coherence times to be achieved at room temperature. These results were obtained for implantation-produced NV$^-$ defects in a high-purity, 99.99% $^{12}$C enriched single crystal chemical vapor deposited diamond. We discuss these remarkably long coherence times in the context of the thermal behavior of residual defect spins. [Published in Physical Review B {bf{88}}, 075206 (2013)]
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)] and provides an optimal measurement approach in terms of the information gain. We address the practical questions, which one faces in any experimental application: the influence of technical noise, and behavior of the tomographic algorithm for an easy to implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly-pure states of the adaptive protocol compared to a non-adaptive. At the same time we show, that for the mixed states the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.
The way in which energy is transported through an interacting system governs fundamental properties in many areas of physics, chemistry, and biology. Remarkably, environmental noise can enhance the transport, an effect known as environment-assisted q uantum transport (ENAQT). In this paper, we study ENAQT in a network of coupled spins subject to engineered static disorder and temporally varying dephasing noise. The interacting spin network is realized in a chain of trapped atomic ions and energy transport is represented by the transfer of electronic excitation between ions. With increasing noise strength, we observe a crossover from coherent dynamics and Anderson localization to ENAQT and finally a suppression of transport due to the quantum Zeno effect. We found that in the regime where ENAQT is most effective the transport is mainly diffusive, displaying coherences only at very short times. Further, we show that dephasing characterized by non-Markovian noise can maintain coherences longer than white noise dephasing, with a strong influence of the spectral structure on the transport effciency. Our approach represents a controlled and scalable way to investigate quantum transport in many-body networks under static disorder and dynamic noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا