ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiferroic Decorated Fe2O3 Monolayer Predicted from First Principles

105   0   0.0 ( 0 )
 نشر من قبل Liangzhi Kou Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing materials with required characteristic properties. Here we identify by first-principles calculations robust 2D multiferroic behaviors in decorated Fe2O3 monolayer, showcasing N@Fe2O3 as a prototypical case, where ferroelectricity and ferromagnetism stem from the same origin, namely Fe d-orbit splitting induced by the Jahn-Teller distortion and associated crystal field changes. The resulting ferromagnetic and ferroelectric polarization can be effectively reversed and regulated by applied electric field or strain, offering efficient functionality. These findings establish strong materials phenomena and elucidate underlying physics mechanism in a family of truly 2D multiferroics that are highly promising for advanced device applications.



قيم البحث

اقرأ أيضاً

Multiferroics are materials where two or more ferroic orders coexist owing to the interplay between spin, charge, lattice and orbital degrees of freedom. The explosive expansion of multiferroics literature in recent years demon-strates the fast growi ng interest in this field. In these studies, the first-principles calculation has played a pioneer role in the experiment explanation, mechanism discovery and prediction of novel multiferroics or magnetoelectric materials. In this review, we discuss, by no means comprehensively, the extensive applications and successful achievements of first-principles approach in the study of multiferroicity, magnetoelectric effect and tunnel junc-tions. In particular, we introduce some our recently developed methods, e.g., the orbital selective external potential (OSEP) method, which prove to be powerful tools in the finding of mechanisms responsible for the intriguing phe-nomena occurred in multiferroics or magnetoelectric materials. We also summarize first-principles studies on three types of electric control of magnetism, which is the common goal of both spintronics and multiferroics. Our review offers in depth understanding on the origin of ferroelectricity in transition metal oxides, and the coexistence of fer-roelectricity and ordered magnetism, and might be helpful to explore novel multiferroic or magnetoelectric materi-als in the future.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi th topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
65 - Riad Nechache 2006
We report the structural and physical properties of epitaxial Bi2FeCrO6 thin films on epitaxial SrRuO3 grown on (100)-oriented SrTiO3 substrates by pulsed laser ablation. The 300 nm thick films exhibit both ferroelectricity and magnetism at room temp erature with a maximum dielectric polarization of 2.8 microC/cm2 at Emax = 82 kV/cm and a saturated magnetization of 20 emu/cc (corresponding to ~ 0.26 Bohr magneton per rhombohedral unit cell), with coercive fields below 100 Oe. Our results confirm the predictions made using ab-initio calculations about the existence of multiferroic properties in Bi2FeCrO6.
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles in puts. The present method extends existing polar and non-polar electron-phonon coupling, ionized impurity, and piezoelectric scattering mechanisms formulated for isotropic band structures to support highly anisotropic materials. We test the formalism by calculating the electronic transport properties of 16 semiconductors and comparing the results against experimental measurements. The present work is amenable for use in high-throughput computational workflows and enables accurate screening of carrier mobilities, lifetimes, and thermoelectric power.
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous w ork has shown that theoretical models of the shift current and the phonon-assisted ballistic current in real materials do not fully account for the experimental BPVE photocurrent, and so other mechanisms should be investigated in order to obtain a complete picture of BPVE. In this Letter, we demonstrate two approaches that enable the ab initio calculation of the ballistic current originating from the electron-hole interaction in semiconductors. Using BaTiO$_3$ and MoS$_2$ as two examples, we show clearly that for them the asymmetric scattering from electron-hole interaction is less appreciable than that from electron-phonon interaction, indicating more scattering processes need to be included to further improve the BPVE theory. Moreover, our approaches build up a venue for predicting and designing materials with larger ballistic current due to electron-hole interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا