ﻻ يوجد ملخص باللغة العربية
We develop a framework for analyzing multivariate time series using topological data analysis (TDA) methods. The proposed methodology involves converting the multivariate time series to point cloud data, calculating Wasserstein distances between the persistence diagrams and using the $k$-nearest neighbors algorithm ($k$-NN) for supervised machine learning. Two methods (symmetry-breaking and anchor points) are also introduced to enable TDA to better analyze data with heterogeneous features that are sensitive to translation, rotation, or choice of coordinates. We apply our methods to room occupancy detection based on 5 time-dependent variables (temperature, humidity, light, CO2 and humidity ratio). Experimental results show that topological methods are effective in predicting room occupancy during a time window. We also apply our methods to an Activity Recognition dataset and obtained good results.
Topological data analysis is a relatively new branch of machine learning that excels in studying high dimensional data, and is theoretically known to be robust against noise. Meanwhile, data objects with mixed numeric and categorical attributes are u
Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the rando
Multivariate time series (MTS) prediction plays a key role in many fields such as finance, energy and transport, where each individual time series corresponds to the data collected from a certain data source, so-called channel. A typical pipeline of
Unsupervised learning seeks to uncover patterns in data. However, different kinds of noise may impede the discovery of useful substructure from real-world time-series data. In this work, we focus on mitigating the interference of left-censorship in t