ﻻ يوجد ملخص باللغة العربية
Linking the properties of galaxies to the assembly history of their dark matter haloes is a central aim of galaxy evolution theory. This paper introduces a dimensionless parameter $sin[0,1]$, the tree entropy, to parametrise the geometry of a halos entire mass assembly hierarchy, building on a generalisation of Shannons information entropy. By construction, the minimum entropy ($s=0$) corresponds to smoothly assembled haloes without any mergers. In contrast, the highest entropy ($s=1$) represents haloes grown purely by equal-mass binary mergers. Using simulated merger trees extracted from the cosmological $N$-body simulation SURFS, we compute the natural distribution of $s$, a skewed bell curve peaking near $s=0.4$. This distribution exhibits weak dependences on halo mass $M$ and redshift $z$, which can be reduced to a single dependence on the relative peak height $delta_{rm c}/sigma(M,z)$ in the matter perturbation field. By exploring the correlations between $s$ and global galaxy properties generated by the SHARK semi-analytic model, we find that $s$ contains a significant amount of information on the morphology of galaxies $-$ in fact more information than the spin, concentration and assembly time of the halo. Therefore, the tree entropy provides an information-rich link between galaxies and their dark matter haloes.
We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the GALFORM semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree buil
We present TreeFrog, a massively parallel halo merger tree builder that is capable comparing different halo catalogues and producing halo merger trees. The code is written in c++11, use the MPI and OpenMP APIs for parallelisation, and includes python
Semi-analytic models are best suited to compare galaxy formation and evolution theories with observations. These models rely heavily on halo merger trees, and their realistic features (i.e., no drastic changes on halo mass or jumps on physical locati
Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes here we study the infl
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here we present a machine learning app