ﻻ يوجد ملخص باللغة العربية
We introduce SchrodingeRNN, a quantum inspired generative model for raw audio. Audio data is wave-like and is sampled from a continuous signal. Although generative modelling of raw audio has made great strides lately, relational inductive biases relevant to these two characteristics are mostly absent from models explored to date. Quantum Mechanics is a natural source of probabilistic models of wave behaviour. Our model takes the form of a stochastic Schrodinger equation describing the continuous time measurement of a quantum system, and is equivalent to the continuous Matrix Product State (cMPS) representation of wavefunctions in one dimensional many-body systems. This constitutes a deep autoregressive architecture in which the systems state is a latent representation of the past observations. We test our model on synthetic data sets of stationary and non-stationary signals. This is the first time cMPS are used in machine learning.
Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recentl
Existing automatic music generation approaches that feature deep learning can be broadly classified into two types: raw audio models and symbolic models. Symbolic models, which train and generate at the note level, are currently the more prevalent ap
In this work, we propose WaveFlow, a small-footprint generative flow for raw audio, which is directly trained with maximum likelihood. It handles the long-range structure of 1-D waveform with a dilated 2-D convolutional architecture, while modeling t
In this paper, we describe our contribution to Task 2 of the DCASE 2018 Audio Challenge. While it has become ubiquitous to utilize an ensemble of machine learning methods for classification tasks to obtain better predictive performance, the majority
Music, speech, and acoustic scene sound are often handled separately in the audio domain because of their different signal characteristics. However, as the image domain grows rapidly by versatile image classification models, it is necessary to study