ﻻ يوجد ملخص باللغة العربية
The interface between organic semiconductor [OSC]/ferromagnetic [FM] material can exhibit ferromagnetism due to their orbital hybridization. Charge/spin transfer may occur from FM to OSC layer leading to the formation of `spinterface i.e. the interface exhibiting a finite magnetic moment. In this work, the magnetic properties of Co/C$_{60}$ bilayer thin film have been studied to probe the interface between Co and C$_{60}$ layer. Polarized neutron reflectivity [PNR] measurement indicates that the thickness and moment of the spinterface are $sim$ 2 $pm$ 0.18 nm and 0.8 $pm$ 0.2 $mu_B$/cage, respectively. The comparison of the magnetization reversal between the Co/C$_{60}$ bilayer and the parent single layer Co thin film reveals that spinterface modifies the domain microstructure. Further, the anisotropy of the bilayer system shows a significant enhancement ($sim$ two times) in comparison to its single layer counterpart which is probably due to an additional interfacial anisotropy arising from the orbital hybridization at the Co/C$_{60}$ interface.
Magnetic properties with chains of hcp Co hollow spheres have been studied. The diameter of the spheres ranges from 500 to 800 nm, with a typical shell thickness of about 60 nm. The shell is polycrystalline with an average crystallite size of 20 to 3
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using PLD technique. The angle dependent magnetic hysteresis, remanent coercivity and temperature dependent coer
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of
We report a study of the magnetization reversals and skyrmion configurations in two systems - Pt/Co/MgO and Ir/Fe/Co/Pt multilayers, where magnetic skyrmions are stabilized by a combination of dipolar and Dzyaloshinskii-Moriya interactions (DMI). Fir