ﻻ يوجد ملخص باللغة العربية
Axisymmetric magnetic activity on the Sun and Sun-like stars increases the frequencies of the modes of acoustic oscillation. However, it is unclear how a corotating patch of activity affects the oscillations, since such a perturbation is unsteady in the frame of the observer. In this paper we qualitatively describe the asteroseismic signature of a large active region in the power spectrum of the dipole and quadrupole p modes. In the corotating frame of the active region, the perturbations due to (differential) rotation and the active region completely lift the $(2ell + 1)$-fold azimuthal degeneracy of the frequency spectrum of modes with harmonic degree $ell$. In the frame of the observer, the unsteady nature of the perturbation leads to the appearance of $(2ell+1)^2$ peaks in the power spectrum of a multiplet. These peaks blend into each other to form asymmetric line profiles. In the limit of a small active region, we approximate the power spectrum of a multiplet in terms of $2times(2ell+1)$ peaks, whose amplitudes and frequencies depend on the latitude of the active region and the inclination angle of the stars rotation axis. In order to check the results and to explore the nonlinear regime, we also perform numerical simulations using the 3D time-domain pseudo-spectral linear pulsation code GLASS.
We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the Solar Dynamic Observatorys Atmospheric Imaging
Recent observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode have shown that low density areas on the periphery of active regions are characterized by strong blue-shifts at 1 MK. These Doppler shifts have been associate
Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first io
Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinodes EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps
We present X-ray imaging spectroscopy of one of the weakest active region (AR) microflares ever studied. The microflare occurred at $sim$11:04 UT on 2018 September 9 and we studied it using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the S