ﻻ يوجد ملخص باللغة العربية
Much like on-premises systems, the natural choice for running database analytics workloads in the cloud is to provision a cluster of nodes to run a database instance. However, analytics workloads are often bursty or low volume, leaving clusters idle much of the time, meaning customers pay for compute resources even when unused. The ability of cloud function services, such as AWS Lambda or Azure Functions, to run small, fine granularity tasks make them appear to be a natural choice for query processing in such settings. But implementing an analytics system on cloud functions comes with its own set of challenges. These include managing hundreds of tiny stateless resource-constrained workers, handling stragglers, and shuffling data through opaque cloud services. In this paper we present Starling, a query execution engine built on cloud function services that employs number of techniques to mitigate these challenges, providing interactive query latency at a lower total cost than provisioned systems with low-to-moderate utilization. In particular, on a 1TB TPC-H dataset in cloud storage, Starling is less expensive than the best provisioned systems for workloads when queries arrive 1 minute apart or more. Starling also has lower latency than competing systems reading from cloud object stores and can scale to larger datasets.
Resource Description Framework (RDF) has been widely used to represent information on the web, while SPARQL is a standard query language to manipulate RDF data. Given a SPARQL query, there often exist many joins which are the bottlenecks of efficienc
Efficient execution of SPARQL queries over large RDF datasets is a topic of considerable interest due to increased use of RDF to encode data. Most of this work has followed either relational or graph-based approaches. In this paper, we propose an alt
Facility location queries identify the best locations to set up new facilities for providing service to its users. Majority of the existing works in this space assume that the user locations are static. Such limitations are too restrictive for planni
Finding patterns in data and being able to retrieve information from those patterns is an important task in Information retrieval. Complex search requirements which are not fulfilled by simple string matching and require exploring certain patterns in
Spreadsheets are end-user programs and domain models that are heavily employed in administration, financial forecasting, education, and science because of their intuitive, flexible, and direct approach to computation. As a result, institutions are sw