ﻻ يوجد ملخص باللغة العربية
This paper studies face recognition (FR) and normalization in surveillance imagery. Surveillance FR is a challenging problem that has great values in law enforcement. Despite recent progress in conventional FR, less effort has been devoted to surveillance FR. To bridge this gap, we propose a Feature Adaptation Network (FAN) to jointly perform surveillance FR and normalization. Our face normalization mainly acts on the aspect of image resolution, closely related to face super-resolution. However, previous face super-resolution methods require paired training data with pixel-to-pixel correspondence, which is typically unavailable between real-world low-resolution and high-resolution faces. FAN can leverage both paired and unpaired data as we disentangle the features into identity and non-identity components and adapt the distribution of the identity features, which breaks the limit of current face super-resolution methods. We further propose a random scale augmentation scheme to learn resolution robust identity features, with advantages over previous fixed scale augmentation. Extensive experiments on LFW, WIDER FACE, QUML-SurvFace and SCface datasets have shown the effectiveness of our method on surveillance FR and normalization.
Applications such as face recognition that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex
Adapting a model to perform well on unforeseen data outside its training set is a common problem that continues to motivate new approaches. We demonstrate that application of batch normalization in the output layer, prior to softmax activation, resul
This paper presents a Neural Aggregation Network (NAN) for video face recognition. The network takes a face video or face image set of a person with a variable number of face images as its input, and produces a compact, fixed-dimension feature repres
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models. Here, we present an effective and efficient alternative that advocates adversarial augmentation on i
Face recognition is an important yet challenging problem in computer vision. A major challenge in practical face recognition applications lies in significant variations between profile and frontal faces. Traditional techniques address this challenge