ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating Relation Constraints with Neural Relation Extractors

101   0   0.0 ( 0 )
 نشر من قبل Yuan Ye
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have seen rapid progress in identifying predefined relationship between entity pairs using neural networks NNs. However, such models often make predictions for each entity pair individually, thus often fail to solve the inconsistency among different predictions, which can be characterized by discrete relation constraints. These constraints are often defined over combinations of entity-relation-entity triples, since there often lack of explicitly well-defined type and cardinality requirements for the relations. In this paper, we propose a unified framework to integrate relation constraints with NNs by introducing a new loss term, ConstraintLoss. Particularly, we develop two efficient methods to capture how well the local predictions from multiple instance pairs satisfy the relation constraints. Experiments on both English and Chinese datasets show that our approach can help NNs learn from discrete relation constraints to reduce inconsistency among local predictions, and outperform popular neural relation extraction NRE models even enhanced with extra post-processing. Our source code and datasets will be released at https://github.com/PKUYeYuan/Constraint-Loss-AAAI-2020.



قيم البحث

اقرأ أيضاً

55 - Xu Wang , Shuai Zhao , Bo Cheng 2021
Question Answering (QA) models over Knowledge Bases (KBs) are capable of providing more precise answers by utilizing relation information among entities. Although effective, most of these models solely rely on fixed relation representations to obtain answers for different question-related KB subgraphs. Hence, the rich structured information of these subgraphs may be overlooked by the relation representation vectors. Meanwhile, the direction information of reasoning, which has been proven effective for the answer prediction on graphs, has not been fully explored in existing work. To address these challenges, we propose a novel neural model, Relation-updated Direction-guided Answer Selector (RDAS), which converts relations in each subgraph to additional nodes to learn structure information. Additionally, we utilize direction information to enhance the reasoning ability. Experimental results show that our model yields substantial improvements on two widely used datasets.
114 - Xiaoyu Chen , Rohan Badlani 2020
Relation extraction is the task of identifying relation instance between two entities given a corpus whereas Knowledge base modeling is the task of representing a knowledge base, in terms of relations between entities. This paper proposes an architec ture for the relation extraction task that integrates semantic information with knowledge base modeling in a novel manner. Existing approaches for relation extraction either do not utilize knowledge base modelling or use separately trained KB models for the RE task. We present a model architecture that internalizes KB modeling in relation extraction. This model applies a novel approach to encode sentences into contextualized relation embeddings, which can then be used together with parameterized entity embeddings to score relation instances. The proposed CRE model achieves state of the art performance on datasets derived from The New York Times Annotated Corpus and FreeBase. The source code has been made available.
130 - Tapas Nayak 2021
Relation extraction from text is an important task for automatic knowledge base population. In this thesis, we first propose a syntax-focused multi-factor attention network model for finding the relation between two entities. Next, we propose two joi nt entity and relation extraction frameworks based on encoder-decoder architecture. Finally, we propose a hierarchical entity graph convolutional network for relation extraction across documents.
203 - Tianyu Gao , Xu Han , Ruobing Xie 2019
Knowledge graphs typically undergo open-ended growth of new relations. This cannot be well handled by relation extraction that focuses on pre-defined relations with sufficient training data. To address new relations with few-shot instances, we propos e a novel bootstrapping approach, Neural Snowball, to learn new relations by transferring semantic knowledge about existing relations. More specifically, we use Relational Siamese Networks (RSN) to learn the metric of relational similarities between instances based on existing relations and their labeled data. Afterwards, given a new relation and its few-shot instances, we use RSN to accumulate reliable instances from unlabeled corpora; these instances are used to train a relation classifier, which can further identify new facts of the new relation. The process is conducted iteratively like a snowball. Experiments show that our model can gather high-quality instances for better few-shot relation learning and achieves significant improvement compared to baselines. Codes and datasets are released on https://github.com/thunlp/Neural-Snowball.
308 - Tapas Nayak , Hwee Tou Ng 2019
Relation extraction is the task of determining the relation between two entities in a sentence. Distantly-supervised models are popular for this task. However, sentences can be long and two entities can be located far from each other in a sentence. T he pieces of evidence supporting the presence of a relation between two entities may not be very direct, since the entities may be connected via some indirect links such as a third entity or via co-reference. Relation extraction in such scenarios becomes more challenging as we need to capture the long-distance interactions among the entities and other words in the sentence. Also, the words in a sentence do not contribute equally in identifying the relation between the two entities. To address this issue, we propose a novel and effective attention model which incorporates syntactic information of the sentence and a multi-factor attention mechanism. Experiments on the New York Times corpus show that our proposed model outperforms prior state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا