ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematical Investigation of Possible Fast Collimated Outflows in Twelve Planetary Nebulae

114   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant fraction of planetary nebulae (PNe) exhibit collimated outflows, distinct narrow kinematical components with notable velocity shifts with respect to the main nebular shells typically associated with low-ionization compact knots and linear or precessing jet-like features. We present here a spatio-kinematical investigation of a sample of twelve PNe with morphologies in emission lines of low-ionization species suggestive of collimated outflows. Using archival narrow-band images and our own high-dispersion long-slit echelle spectra, we confirm the presence of collimated outflows in Hen 2-429, J 320, M 1-66, M 2-40, M 3-1, and NGC 6210 and possibly in NGC 6741, for which the spatio-kinematical data can also be interpreted as a pair of bipolar lobes. The presence of collimated outflows is rejected in Hen 2-47, Hen 2-115, M 1-26, and M 1-37, but their morphology and kinematics are indicative of the action of supersonic outflows that have not been able to pierce through the nebular envelope. In this sense, M 1-66 appears to have experienced a similar interaction between the outflow and nebular envelope, but, as opposed to these four PNe, the outflow has been able to break through the nebular envelope. It is suggested that the PNe without collimated outflows in our sample are younger or descend from lower mass progenitors than those that exhibit unambiguous collimated outflows.



قيم البحث

اقرأ أيضاً

Magnetic fields of order $10^1-10^2$ gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in proto-planetary nebulae. Usi ng 2D simulations of magnetized winds interacting with an envelope drawn from a 3D simulation of the common envelope phase, we study the confinement, heating, and magnetic field development of post-common envelope winds. We find that the ejected magnetic field can be enhanced via compression by factors up to $sim 10^4$ in circumbinary disks during the self-regulated phases. We find values for the kinetic energy of the order of $10^{46}$ erg that explain the large values inferred in proto-planetary nebula outflows. We show that the interaction of the formed circumbinary disk with a spherical, stellar wind produces a tapered flow that is almost indistinguishable from an imposed tapered flow. This increases the uncertainty of the origin of proto-planetary nebula winds, which could be either stellar, circumstellar (stellar accretion disk), circumbinary (circumbinary accretion disk), or a combination of all three. Within this framework, a scenario for self-collimation of weakly magnetized winds is discussed, which can explain the two objects where the collimation process is observationally resolved, HD 101584 and Hen 3-1475. An explanation for the equatorial, molecular hydrogen emission in CRL 2688 is also presented.
Fast outflows and their interaction with slow shells (generally known as the fossil circumstellar envelope of asymptotic giant branch stars) play an important role in the structure and kinematics of protoplanetary and planetary nebulae (pPNe, PNe). T o properly study their effects within these objects, we also need to observe the intermediate-temperature gas, which is only detectable in the far-infrared (FIR) and submillimetre (submm) transitions. We study the physical conditions of the outflows presented in a number of pPNe and PNe, with a focus on their temperature and excitation states. We carried out Herschel/HIFI observations in the submm lines of 12CO in nine pPNe and nine PNe and complemented them with low-J CO spectra obtained with the IRAM 30m telescope and taken from the literature. The spectral resolution of HIFI allows us to identify and measure the different nebular components in the line profiles. The comparison with large velocity gradient (LVG) model predictions was used to estimate the physical conditions of the warm gas in the nebulae, such as excitation conditions, temperature, and density. We found high kinetic temperatures for the fast winds of pPNe, typically reaching between 75 K and 200 K. In contrast, the high-velocity gas in the sampled PNe is colder, with characteristic temperatures between 25 K and 75 K, and it is found in a lower excitation state. We interpret this correlation of the kinetic temperature and excitation state of fast outflows with the amount of time elapsed since their acceleration (probably driven by shocks) as a consequence of the cooling that occurred during the pPN phase.
In this work we aimed to describe the three-dimensional morphology and kinematics of the molecular gas of the water-fountain nebula IRAS 16342-3814. In order to do this, we retrieved data from the ALMA archive to analyse it using a simple spatio-kine matical model. We used the software SHAPE to construct a three-dimensional spatio-kinematical model of the molecular gas in IRAS 16342-3814. By reproducing the intensity distribution and position-velocity diagram of the CO emission from the ALMA observations we derived the morphology and velocity field of the gas. We used CO(1-0) data to support the physical interpretation of the model. A spatio-kinematical model that includes a high-velocity collimated outflow embedded within material expanding at relatively lower velocity reproduces the images and position-velocity diagrams from the observations. The high-velocity collimated outflow exhibits deceleration across its length, while the velocity of the surrounding component increases with distance. The morphology of the emitting region; the velocity field and the mass of the gas as function of velocity are in excellent agreement with the properties predicted for a molecular outflow driven by a jet. The timescale of the molecular outflow is estimated to be ~70-100 years. An oscillating pattern was found associated to the high-velocity collimated outflow. The oscillation period of the pattern is T~60-90 years and its opening angle is ~2 degrees. The CO (3-2) emission in IRAS 16342-3814 is interpreted in terms of a jet-driven molecular outflow expanding along an elongated region. The position-velocity diagram and the mass spectrum reveal a feature due to entrained material that is associated to the driving jet. It is likely that the jet in those objects has already disappeared since it is expected to last only for a couple of hundred years.
We present interferometric, full-polarization observations of the four ground-state transitions of OH, toward five confirmed and one candidate OH-emitting planetary nebulae (OHPNe). OHPNe are believed to be very young PNe, and information on their ma gnetic fields (provided by their polarization) could be key to understand the early evolution of PNe. We detect significant circular and linear polarization in four and two objects, respectively. Possible Zeeman pairs are seen in JaSt 23 and IRAS 17393-2727, resulting in estimates of magnetic field strengths between 0.8 and 24 mG. We also report the new detection of OH emission at 1720 MHz toward Vy 2-2, making it the third known PN with this type of emission. We suggest that younger PNe have spectra dominated by narrow maser features and higher degrees of polarization. Shock-excited emission at 1720 MHz seems to be more common in PNe than in early evolutionary phases, and could be related to equatorial ejections during the early PN phase.
159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f ew years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا