ﻻ يوجد ملخص باللغة العربية
We prove an analogue of the Lagrange Inversion Theorem for Dirichlet series. The proof is based on studying properties of Dirichlet convolution polynomials, which are analogues of convolution polynomials introduced by Knuth in [4].
There exist many explicit evaluations of Dirichlet series. Most of them are constructed via the same approach: by taking products or powers of Dirichlet series with a known Euler product representation. In this paper we derive a result of a new flavo
The Dirichlet series $L_m(s)$ are of fundamental importance in number theory. Shanks defined the generalized Euler and class numbers in connection with these Dirichlet series, denoted by ${s_{m,n}}_{ngeq 0}$. We obtain a formula for the exponential g
We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form $k(s,u) = sum a_n n^{-s-bar u}$, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert
We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to $mathbb{C}^2$ and use Tauberian methods to obtain counts fo
Weyl group multiple Dirichlet series, introduced by Brubaker, Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker coefficients of Eisenstein series on metaplectic groups. Chinta and Gunnells constructed these multiple Dirichlet series