ترغب بنشر مسار تعليمي؟ اضغط هنا

Checking Chase Termination over Ontologies of Existential Rules with Equality

97   0   0.0 ( 0 )
 نشر من قبل David Carral
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The chase is a sound and complete algorithm for conjunctive query answering over ontologies of existential rules with equality. To enable its effective use, we can apply acyclicity notions; that is, sufficient conditions that guarantee chase termination. Unfortunately, most of these notions have only been defined for existential rule sets without equality. A proposed solution to circumvent this issue is to treat equality as an ordinary predicate with an explicit axiomatisation. We empirically show that this solution is not efficient in practice and propose an alternative approach. More precisely, we show that, if the chase terminates for any equality axiomatisation of an ontology, then it terminates for the original ontology (which may contain equality). Therefore, one can apply existing acyclicity notions to check chase termination over an axiomatisation of an ontology and then use the original ontology for reasoning. We show that, in practice, doing so results in a more efficient reasoning procedure. Furthermore, we present equality model-faithful acyclicity, a general acyclicity notion that can be directly applied to ontologies with equality.



قيم البحث

اقرأ أيضاً

Ontology-mediated query answering (OMQA) is a promising approach to data access and integration that has been actively studied in the knowledge representation and database communities for more than a decade. The vast majority of work on OMQA focuses on conjunctive queries, whereas more expressive queries that feature counting or other forms of aggregation remain largely unex-plored. In this paper, we introduce a general form of counting query, relate it to previous proposals, and study the complexity of answering such queries in the presence of DL-Lite ontologies. As it follows from existing work that query answering is intractable and often of high complexity, we consider some practically relevant restrictions, for which we establish improved complexity bounds.
We investigate the termination problem of a family of multi-path polynomial programs (MPPs), in which all assignments to program variables are polynomials, and test conditions of loops and conditional statements are polynomial equalities. We show tha t the set of non-terminating inputs (NTI) of such a program is algorithmically computable, thus leading to the decidability of its termination. To the best of our knowledge, the considered family of MPPs is hitherto the largest one for which termination is decidable. We present an explicit recursive function which is essentially Ackermannian, to compute the maximal length of ascending chains of polynomial ideals under a control function, and thereby obtain a complete answer to the questions raised by Seidenberg. This maximal length facilitates a precise complexity analysis of our algorithms for computing the NTI and deciding termination of MPPs. We extend our method to programs with polynomial guarded commands and show how an incomplete procedure for MPPs with inequality guards can be obtained. An application of our techniques to invariant generation of polynomial programs is further presented.
Topological Spatial Model Checking is a recent paradigm that combines Model Checking with the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can b e used for expressing interesting spatial properties, such as being near to or being surrounded by. SLCS constitutes the kernel of a solid logical framework for reasoning about discrete space, such as graphs and digital images, interpreted as quasi discrete closure spaces. In particular, the spatial model checker VoxLogicA, that uses an extended version of SLCS, has been used successfully in the domain of medical imaging. However, SLCS is not restricted to discrete space. Following a recently developed geometric semantics of Modal Logic, we show that it is possible to assign an interpretation to SLCS in continuous space, admitting a model checking procedure, by resorting to models based on polyhedra. In medical imaging such representations of space are increasingly relevant, due to recent developments of 3D scanning and visualisation techniques that exploit mesh processing. We demonstrate feasibility of our approach via a new tool, PolyLogicA, aimed at efficient verification of SLCS formulas on polyhedra, while inheriting some well-established optimization techniques already adopted in VoxLogicA. Finally, we cater for a geometric definition of bisimilarity, proving that it characterises logical equivalence.
We study complexity of the model-checking problems for LTL with registers (also known as freeze LTL) and for first-order logic with data equality tests over one-counter automata. We consider several classes of one-counter automata (mainly determinist ic vs. nondeterministic) and several logical fragments (restriction on the number of registers or variables and on the use of propositional variables for control locations). The logics have the ability to store a counter value and to test it later against the current counter value. We show that model checking over deterministic one-counter automata is PSPACE-complete with infinite and finite accepting runs. By constrast, we prove that model checking freeze LTL in which the until operator is restricted to the eventually operator over nondeterministic one-counter automata is undecidable even if only one register is used and with no propositional variable. As a corollary of our proof, this also holds for first-order logic with data equality tests restricted to two variables. This makes a difference with the facts that several verification problems for one-counter automata are known to be decidable with relatively low complexity, and that finitary satisfiability for the two logics are decidable. Our results pave the way for model-checking memoryful (linear-time) logics over other classes of operational models, such as reversal-bounded counter machines.
We consider existential rules (aka Datalog+) as a formalism for specifying ontologies. In recent years, many classes of existential rules have been exhibited for which conjunctive query (CQ) entailment is decidable. However, most of these classes can not express transitivity of binary relations, a frequently used modelling construct. In this paper, we address the issue of whether transitivity can be safely combined with decidable classes of existential rules. First, we prove that transitivity is incompatible with one of the simplest decidable classes, namely aGRD (acyclic graph of rule dependencies), which clarifies the landscape of `finite expansion sets of rules. Second, we show that transitivity can be safely added to linear rules (a subclass of guarded rules, which generalizes the description logic DL-Lite-R) in the case of atomic CQs, and also for general CQs if we place a minor syntactic restriction on the rule set. This is shown by means of a novel query rewriting algorithm that is specially tailored to handle transitivity rules. Third, for the identified decidable cases, we pinpoint the combined and data complexities of query entailment.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا