ﻻ يوجد ملخص باللغة العربية
We develop an approach for fitting the results of modeling of wriggling radial large scale iron pattern along the Galactic disk, derived over young (high massive) Cepheids, with the metallicity distribution, obtained using low mass long living dwarf stars in the close solar vicinity. For this, at the step of computing of the theoretical abundance distribution over low mass stars in the solar vicinity we propose to redefine the initial mass function so as the resulting theoretical stellar distribution over masses would be close to the distribution in the observed sample. By means of the above algorithm and subsequent corrections of the theoretical metallicity distribution function, described in literature, we have achieved fairly well agreement of the theoretical and observed metallicity distribution functions for low mass stars in the local solar vicinity.
A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies. We develop a simple and flexi
The study of radial metallicity gradients in the disc of the Milky Way is a powerful tool to understand the mechanisms that have been acting in the formation and evolution of the Galactic disc. In this proceeding, I will put the eye on some problems
In this paper we test 8 models of the free electron distribution in the Milky Way that have been published previously, and we introduce 4 additional models that explore the parameter space of possible models further. These new models consist of a simple exponential thick disk model, and updat
We estimate the 3D density profile of the Galactic dark matter (DM) halo within $r lesssim 30$ kpc from the Galactic centre by using the astrometric data for halo RR Lyrae stars from Gaia DR2. We model both the stellar halo distribution function and
This study is based on high quality astrometric and spectroscopic data from the most recent releases by Gaia and APOGEE. We select $58,882$ thin and thick disk red giants, in the Galactocentric (cylindrical) distance range $5 < R < 13$~kpc and within