ﻻ يوجد ملخص باللغة العربية
The discovery of magnetic skyrmion bubbles in centrosymmetric magnets has been receiving increasing interest from the research community, due to the fascinating physics of topological spin textures and its possible applications to spintronics. However, key challenges remain, such as how to manipulate the nucleation of skyrmion bubbles to exclude the trivial bubbles or metastable skyrmion bubbles that usually coexist with skyrmion bubbles in the centrosymmetric magnets. Here, we report having successfully performed this task by applying spatially geometric confinement to a centrosymmetric frustrated Fe3Sn2 magnet. We demonstrate that the spatially geometric confinement can indeed stabilize the skyrmion bubbles, by effectively suppressing the formation of trivial bubbles and metastable skyrmion bubbles. We also show that the critical magnetic field for the nucleation of the skyrmion bubbles in the confined Fe3Sn2 nanostripes is drastically less, by an order of magnitude, than that what is required in the thin plate without geometrical confinement. By analyzing how the width and thickness of the nanostripes affect the spin textures of skyrmion bubbles, we infer that the topological transition of skyrmion bubbles is closely related to the dipole-dipole interaction, which we find is consistent with theoretical simulations. The results presented here represent an important step forward in manipulating the topological spin textures of skyrmion bubbles, making us closer to achieving the fabrication of skyrmion-based racetrack memory devices.
Room-temperature polar skyrmion bubbles that are recently found in oxide superlattice, have received enormous interests for their potential applications in nanoelectronics due to the nanometer size, emergent chirality, and negative capacitance. For p
We have investigated an analytic formula of the 1-dimensional magnetic skyrmion dynamics under external magnetic field gradient. We find excellent agreement between the analytical model and micromagnetic simulation results for various magnetic parame
In monolayer transition metal dichalcogenides, quantum emitters are associated with localized strain that can be deterministically applied to create designer nano-arrays of single photon sources. Despite an overwhelming empirical correlation with loc
Magnetic skyrmion is a promising building block for developing information storage and computing devices. It can be stabilized in a ferromagnetic thin film with the Dzyaloshinskii-Moriya interaction (DMI). The moving ferromagnetic skyrmion may show t
We show that skyrmions on the surface of a magnetic topological insulator may experience an attractive interaction that leads to the formation of a skyrmion-skyrmion bound state. This is in contrast to the case of skyrmions in a conventional chiral f