ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility of ortho-positronium lifetime studies with the J-PET detector in context of mirror matter models

79   0   0.0 ( 0 )
 نشر من قبل Wojciech Krzemien
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the possibility to perform the experimental searches of invisible decays in the ortho-positronium system with the J-PET detector



قيم البحث

اقرأ أيضاً

The J-PET tomograph is constructed from plastic scintillator strips arranged axially in concentric cylindrical layers. It enables investigations of positronium decays by measurement of the time, position, polarization and energy deposited by photons in the scintillators, in contrast to studies conducted so far with crystal and semiconductor based detection systems where the key selection of events is based on the measurement of the photons energies. In this article we show that the J-PET tomograph system is capable of exclusive measurements of the decays of ortho-positronium atoms. We present the first positronium production results, its lifetime distribution measurements and discuss estimation of the influence of various background sources. The tomograph s performance demonstrated here makes it suitable for precision studies of positronium decays including entanglement of the final state photons, positron annihilation lifetime spectroscopy plus molecular imaging diagnostics.
In this paper we present prospects for using the J-PET detector to search for discrete symmetries violations in a purely leptonic system of the positronium atom. We discuss tests of CP and CPT symmetries by means of ortho-positronium decays into thre e photons. No zero expectation values for chosen correlations between ortho-positronium spin and momentum vectors of photons would imply the existence of physics phenomena beyond the Standard Model. Previous measurements resulted in violation amplitude parameters for CP and CPT symmetries consistent with zero, with an uncertainty of about 10-3. The J-PET detector allows to determine those values with better precision thanks to a unique time and angular esolution combined with a high geometrical acceptance. Achieving the aforementioned is possible due to application of polymer scintillators instead of crystals as detectors of annihilation quanta.
171 - J. Raj , A. Gajos , C. Curceanu 2018
The Jagiellonian Positron Emission Tomograph (J-PET) is a novel de- vice being developed at Jagiellonian University in Krakow, Poland based on or- ganic scintillators. J-PET is an axially symmetric and high acceptance scanner that can be used as a mu lti-purpose detector system. It is well suited to pur- sue tests of discrete symmetries in decays of positronium in addition to medical imaging. J-PET enables the measurement of both momenta and the polarization vectors of annihilation photons. The latter is a unique feature of the J-PET detector which allows the study of time reversal symmetry violation operator which can be constructed solely from the annihilation photons momenta before and after the scattering in the detector.
This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by positronium atoms using the J-PET detector. The present state of T symmetry tests is discussed with an emphasis on th e scarcely explored sector of leptonic systems. Two possible strategies of searching for manifestations of T violation in non-vanishing angular correlations of final state observables in the decays of metastable triplet states of positronium available with J-PET are proposed and discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T -violation sensitive observables.
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا