We compute the expectation value of the energy-momentum tensor in the in-vacuum state of the quantized Dirac field coupled to a uniform electric field background on the Poincar$rmacute{e}$ path of the two dimensional de~Sitter spacetime ($mathrm{dS}_{2}$). The adiabatic regularization scheme is applied to remove the ultraviolet divergencies from the expressions. We find, the off-diagonal components of the induced energy-momentum tensor vanishes and the absolute values of the diagonal components are increasing functions of the electric field which decrease as the Dirac field mass increases. We derive the trace anomaly of the induced energy-momentum tensor, which agrees precisely with the trace anomaly derived earlier in the literature. We have discusses the backreaction of the induced energy-momentum tensor on the gravitational field.