ﻻ يوجد ملخص باللغة العربية
During an accelerated expansion of the Universe, quantum fluctuations of sub-Planckian size can be stretched outside the horizon and be regarded effectively classical. Recently, it has been conjectured that such horizon-crossing of trans-Planckian modes never happens inside theories of quantum gravity (the trans-Planckian censorship conjecture, TCC). We point out several conceptual problems of this conjecture, which is in itself formulated as a statement on the restriction of possible scenarios in a theory: by contrast a standard swampland conjecture is a restriction of possible theories in the landscape of the quantum gravity. We emphasize the concept of swampland universality, i.e. that a swampland conjecture constrains any possible scenario in a given effective field theory. In order to illustrate the problems clearly we introduce sever
In this paper, we propose a new Swampland condition, the Trans-Planckian Censorship Conjecture (TCC), based on the idea that in a consistent quantum theory of gravity sub-Planckian quantum fluctuations should remain quantum and never become larger th
I review the Trans-Planckian Censorship Conjecture (TCC) and its implications for cosmology, in particular for the inflationary universe scenario. Whereas the inflationary scenario is tightly constrained by the TCC, alternative early universe scenarios are not restricted.
We study the implications of the recently proposed Trans-Planckian Censorship Conjecture (TCC) for early universe cosmology and in particular inflationary cosmology. The TCC leads to the conclusion that if we want inflationary cosmology to provide a
It was recently proposed that a field theory cannot be consistent with quantum gravity if it allows a mode shorter than the Planck length to exit the Hubble horizon. This is called the Trans-Planckian Censorship Conjecture (TCC). We discuss the impli
I conjecture an upper bound on the number of possible swampland conjectures by comparing the entropy required by the conjectures themselves to the Beckenstein-Hawking entropy of the cosmological horizon. Assuming of order 100 kilobits of entropy per