ترغب بنشر مسار تعليمي؟ اضغط هنا

Moral Dilemmas for Artificial Intelligence: a position paper on an application of Compositional Quantum Cognition

99   0   0.0 ( 0 )
 نشر من قبل Camilo Miguel Signorelli
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditionally, the way one evaluates the performance of an Artificial Intelligence (AI) system is via a comparison to human performance in specific tasks, treating humans as a reference for high-level cognition. However, these comparisons leave out important features of human intelligence: the capability to transfer knowledge and make complex decisions based on emotional and rational reasoning. These decisions are influenced by current inferences as well as prior experiences, making the decision process strongly subjective and apparently biased. In this context, a definition of compositional intelligence is necessary to incorporate these features in future AI tests. Here, a concrete implementation of this will be suggested, using recent developments in quantum cognition, natural language and compositional meaning of sentences, thanks to categorical compositional models of meaning.



قيم البحث

اقرأ أيضاً

The field of machine ethics is concerned with the question of how to embed ethical behaviors, or a means to determine ethical behaviors, into artificial intelligence (AI) systems. The goal is to produce artificial moral agents (AMAs) that are either implicitly ethical (designed to avoid unethical consequences) or explicitly ethical (designed to behave ethically). Van Wynsberghe and Robbins (2018) paper Critiquing the Reasons for Making Artificial Moral Agents critically addresses the reasons offered by machine ethicists for pursuing AMA research; this paper, co-authored by machine ethicists and commentators, aims to contribute to the machine ethics conversation by responding to that critique. The reasons for developing AMAs discussed in van Wynsberghe and Robbins (2018) are: it is inevitable that they will be developed; the prevention of harm; the necessity for public trust; the prevention of immoral use; such machines are better moral reasoners than humans, and building these machines would lead to a better understanding of human morality. In this paper, each co-author addresses those reasons in turn. In so doing, this paper demonstrates that the reasons critiqued are not shared by all co-authors; each machine ethicist has their own reasons for researching AMAs. But while we express a diverse range of views on each of the six reasons in van Wynsberghe and Robbins critique, we nevertheless share the opinion that the scientific study of AMAs has considerable value.
Climate change has become one of the biggest global problems increasingly compromising the Earths habitability. Recent developments such as the extraordinary heat waves in California & Canada, and the devastating floods in Germany point to the role o f climate change in the ever-increasing frequency of extreme weather. Numerical modelling of the weather and climate have seen tremendous improvements in the last five decades, yet stringent limitations remain to be overcome. Spatially and temporally localized forecasting is the need of the hour for effective adaptation measures towards minimizing the loss of life and property. Artificial Intelligence-based methods are demonstrating promising results in improving predictions, but are still limited by the availability of requisite hardware and software required to process the vast deluge of data at a scale of the planet Earth. Quantum computing is an emerging paradigm that has found potential applicability in several fields. In this opinion piece, we argue that new developments in Artificial Intelligence algorithms designed for quantum computers - also known as Quantum Artificial Intelligence (QAI) - may provide the key breakthroughs necessary to furthering the science of climate change. The resultant improvements in weather and climate forecasts are expected to cascade to numerous societal benefits.
In this paper we discuss how systems with Artificial Intelligence (AI) can undergo safety assessment. This is relevant, if AI is used in safety related applications. Taking a deeper look into AI models, we show, that many models of artificial intelli gence, in particular machine learning, are statistical models. Safety assessment would then have t o concentrate on the model that is used in AI, besides the normal assessment procedure. Part of the budget of dangerous random failures for the relevant safety integrity level needs to be used for the probabilistic faulty behavior of the AI system. We demonstrate our thoughts with a simple example and propose a research challenge that may be decisive for the use of AI in safety related systems.
There is a significant lack of unified approaches to building generally intelligent machines. The majority of current artificial intelligence research operates within a very narrow field of focus, frequently without considering the importance of the big picture. In this document, we seek to describe and unify principles that guide the basis of our development of general artificial intelligence. These principles revolve around the idea that intelligence is a tool for searching for general solutions to problems. We define intelligence as the ability to acquire skills that narrow this search, diversify it and help steer it to more promising areas. We also provide suggestions for studying, measuring, and testing the various skills and abilities that a human-level intelligent machine needs to acquire. The document aims to be both implementation agnostic, and to provide an analytic, systematic, and scalable way to generate hypotheses that we believe are needed to meet the necessary conditions in the search for general artificial intelligence. We believe that such a framework is an important stepping stone for bringing together definitions, highlighting open problems, connecting researchers willing to collaborate, and for unifying the arguably most significant search of this century.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا