ﻻ يوجد ملخص باللغة العربية
We study competitive equilibrium in the canonical Fisher market model, but with indivisible goods. In this model, every agent has a budget of artificial currency with which to purchase bundles of goods. Equilibrium prices match between demand and supply---at such prices, all agents simultaneously get their favorite within-budget bundle, and the market clears. Unfortunately, a competitive equilibrium may not exist when the goods are indivisible, even in extremely simple markets such as two agents with exactly the same budget and a single item. Yet in this example, once the budgets are slightly perturbed---i.e., made generic---a competitive equilibrium is guaranteed to exist. In this paper we explore the extent to which generic budgets can guarantee equilibrium existence (and thus related fairness guarantees) in markets with multiple items. We complement our results in [Babaioff et al., 2019] for additive preferences by exploring the case of general monotone preferences, establishing positive results for small numbers of items and mapping the limits of our approach. We then consider cardinal preferences, define a hierarchy of such preference classes and establish relations among them, and for some classes prove equilibrium existence under generic budgets.
Competitive equilibrium from equal incomes (CEEI) is a classic solution to the problem of fair and efficient allocation of goods [Foley67, Varian74]. Every agent receives an equal budget of artificial currency with which to purchase goods, and prices
We study equilibria of markets with $m$ heterogeneous indivisible goods and $n$ consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the
We study secretary problems in settings with multiple agents. In the standard secretary problem, a sequence of arbitrary awards arrive online, in a random order, and a single decision maker makes an immediate and irrevocable decision whether to accep
We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and
A decision maker (DM) determines a set of reactions that receivers can choose before senders and receivers move in a generalized competitive signaling model with two-sided matching. The DMs optimal design of the unique stronger monotone signaling equ