ﻻ يوجد ملخص باللغة العربية
We consider a scenario in which an autonomous agent carries out a mission in a stochastic environment while passively observed by an adversary. For the agent, minimizing the information leaked to the adversary regarding its high-level specification is critical in creating an informational advantage. We express the specification of the agent as a parametric linear temporal logic formula, measure the information leakage by the adversarys confidence in the agents mission specification, and propose algorithms to synthesize a policy for the agent which minimizes the information leakage to the adversary. In the scenario considered, the adversary aims to infer the specification of the agent from a set of candidate specifications, each of which has an associated likelihood probability. The agents objective is to synthesize a policy that maximizes the entropy of the adversarys likelihood distribution while satisfying its specification. We propose two approaches to solve the resulting synthesis problem. The first approach computes the exact satisfaction probabilities for each candidate specification, whereas the second approach utilizes the Frechet inequalities to approximate them. For each approach, we formulate a mixed-integer program with a quasiconcave objective function. We solve the problem using a bisection algorithm. Finally, we compare the performance of both approaches on numerical simulations.
To handle the detrimental effects brought by leakage of radioactive gases at nuclear power station, we propose a bus based evacuation optimization problem. The proposed model incorporates the following four constraints, 1) the maximum dose of radiati
We develop a learning-based algorithm for the control of robotic systems governed by unknown, nonlinear dynamics to satisfy tasks expressed as signal temporal logic specifications. Most existing algorithms either assume certain parametric forms for t
Mixed observable Markov decision processes (MOMDPs) are a modeling framework for autonomous systems described by both fully and partially observable states. In this work, we study the problem of synthesizing a control policy for MOMDPs that minimizes
This paper studies the impact of imperfect information in online control with adversarial disturbances. In particular, we consider both delayed state feedback and inexact predictions of future disturbances. We introduce a greedy, myopic policy that y
This paper introduces HPIPM, a high-performance framework for quadratic programming (QP), designed to provide building blocks to efficiently and reliably solve model predictive control problems. HPIPM currently supports three QP types, and provides i