Toy model of boundary states with spurious topological entanglement entropy


الملخص بالإنكليزية

Topological entanglement entropy has been extensively used as an indicator of topologically ordered phases. We study the conditions needed for two-dimensional topologically trivial states to exhibit spurious contributions that contaminates topological entanglement entropy. We show that if the state at the boundary of a subregion is a stabilizer state, then it has a non-zero spurious contribution to the region if and only if, the state is in a non-trivial one-dimensional $G_1times G_2$ symmetry-protected-topological (SPT) phase. However, we provide a candidate of a boundary state that has a non-zero spurious contribution but does not belong to any such SPT phase.

تحميل البحث