ﻻ يوجد ملخص باللغة العربية
Topological entanglement entropy has been extensively used as an indicator of topologically ordered phases. We study the conditions needed for two-dimensional topologically trivial states to exhibit spurious contributions that contaminates topological entanglement entropy. We show that if the state at the boundary of a subregion is a stabilizer state, then it has a non-zero spurious contribution to the region if and only if, the state is in a non-trivial one-dimensional $G_1times G_2$ symmetry-protected-topological (SPT) phase. However, we provide a candidate of a boundary state that has a non-zero spurious contribution but does not belong to any such SPT phase.
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly eval
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an up
Topological phase, a novel and fundamental role in matter, displays an extraordinary robustness to smooth changes in material parameters or disorder. A crossover between topological physics and quantum information may lead to inherent fault-tolerant
An algorithm is proposed that serves to handle full rank density matrices, when coming from a lower rank method to compute the convex-roof. This is in order to calculate an upper bound for any polynomial SL invariant multipartite entanglement measure
We consider two-dimensional states of matter satisfying an uniform area law for entanglement. We show that the topological entanglement entropy is equal to the minimum relative entropy distance from the reduced state to the set of thermal states of l