ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Effects from Small QCD Instantons: Making Soft Bombs at Hadron Colliders

64   0   0.0 ( 0 )
 نشر من قبل Valentin V. Khoze
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is a common belief that the last missing piece of the Standard Model of particles physics was found with the discovery of the Higgs boson at the Large Hadron Collider. However, there remains a major prediction of quantum tunnelling processes mediated by instanton solutions in the Yang-Mills theory, that is still untested in the Standard Model. The direct experimental observation of instanton-induced processes, which are a consequence of the non-trivial vacuum structure of the Standard Model and of quantum tunnelling in QFT, would be a major breakthrough in modern particle physics. In this paper, we present for the first time a full calculation of QCD instanton-induced processes in proton-proton collisions accounting for quantum corrections due to both initial and final state gluon interactions, a first implementation in an MC event generator as well as a basic strategy how to observe these effects experimentally.



قيم البحث

اقرأ أيضاً

QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological e xploration of QCD and a vastly improved fundamental understanding of its non-perturbative dynamics. Building on the optical theorem, we numerically calculate the total instanton cross-section from the elastic scattering amplitude, also including quantum effects arising from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large scattering cross-section at small centre-of-mass partonic energies, discovering them at hadron colliders is a challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for discovering QCD instanton-generated processes.
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all o ther quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, this result represents the first analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
We present an analytic computation of the two-loop QCD corrections to $ubar{d}to W^+bbar{b}$ for an on-shell $W$-boson using the leading colour and massless bottom quark approximations. We perform an integration-by-parts reduction of the unpolarised squared matrix element using finite field reconstruction techniques and identify an independent basis of special functions that allows an analytic subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for five-particle scattering with an off-shell leg.
We present next-to-next-to-leading-order (NNLO) QCD corrections to the production of three isolated photons in hadronic collisions at the fully differential level. We employ qT subtraction within MATRIX and an efficient implementation of analytic two -loop amplitudes in the leading-colour approximation to achieve the first on-the-fly calculation for this process at NNLO accuracy. Numerical results are presented for proton-proton collisions at energies ranging from 7 TeV to 100 TeV. We find full agreement with the 8 TeV results of arXiv:1911.00479 and confirm that NNLO corrections are indispensable to describe ATLAS 8 TeV data. In addition, we demonstrate the significance of NNLO corrections for future precision studies of triphoton production at higher collision energies.
We present an analytic computation of the gluon-initiated contribution to diphoton plus jet production at hadron colliders up to two loops in QCD. We reconstruct the analytic form of the finite remainders from numerical evaluations over finite fields including all colour contributions. Compact expressions are found using the pentagon function basis. We provide a fast and stable implementation for the colour- and helicity-summed interference between the one-loop and two-loop finite remainders in C++ as part of the NJet library.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا