ترغب بنشر مسار تعليمي؟ اضغط هنا

M51 ULX-7: super-orbital periodicity and constraints on the neutron star magnetic field

63   0   0.0 ( 0 )
 نشر من قبل Georgios Vasilopoulos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the current work we explore the applicability of standard theoretical models of accretion to the observed properties of M51 ULX-7. The spin-up rate and observed X-ray luminosity are evidence of a neutron star with a surface magnetic field of $2-7times10^{13}$ G, rotating near equilibrium. Analysis of the X-ray light-curve of the system (Swift/XRT data) reveals the presence of a $sim$39 d super-orbital period. We argue that the super-orbital periodicity is due to disc precession, and that material is accreted onto the neutron star at a constant rate throughout it. Moreover, by attributing this modulation to the free precession of the neutron star we estimate a surface magnetic field strength of $3-4times10^{13}$ G. The agreement of these two independent estimates provide strong constraints on the surface polar magnetic field strength of the neutron star.



قيم البحث

اقرأ أيضاً

We report on the temporal properties of the ULX pulsar M51 ULX-7 inferred from the analysis of the 2018-2020 Swift/XRT monitoring data and archival Chandra data obtained over a period of 33 days in 2012. We find an extended low flux state, which migh t be indicative of propeller transition, lending further support to the interpretation that the NS is rotating near equilibrium. Alternatively, this off state could be related to a variable super-orbital period. Moreover, we report the discovery of periodic dips in the X-ray light curve that are associated with the binary orbital period. The presence of the dips implies a configuration where the orbital plane of the binary is closer to an edge on orientation, and thus demonstrates that favorable geometries are not necessary in order to observe ULX pulsars.These characteristics are similar to those seen in prototypical X-ray pulsars like Her X-1 and SMC X-1 or other ULX pulsars like NGC 5907 ULX1.
122 - M. Coleman Miller 2016
Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. S everal different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star -- black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method.
65 - L. J. Townsend 2020
We present evidence for a simple linear relationship between the orbital period and super-orbital period in ultra-luminous X-ray (ULX) pulsars, akin to what is seen in the population of disc-fed neutron star super-giant X-ray binary and Be/X-ray bina ry systems. We argue that the most likely cause of this relationship is the modulation of precessing hot spots or density waves in an accretion or circumstellar disc by the binary motion of the system, implying a physical link between ULX pulsars and high-mass X-ray binary (HMXB) pulsars. This hypothesis is supported by recent studies of Galactic and Magellanic Cloud HMXBs accreting at super-Eddington rates, and the position of ULX pulsars on the spin period--orbital period diagram of HMXBs. An interesting secondary relationship discovered in this work is the apparent connection between disc-fed HMXBs, ULXs and a seemingly unrelated group of early-type binaries showing so-called double-periodic variability. We suggest that these systems are good candidates to be the direct progenitors of Be/X-ray binaries.
The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over t he range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density $L$. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict $L<70$ MeV.
In November 2019, MAXI detected an X-ray outburst from the known Be X-ray binary system RX J0209.6-7427 located in the outer wing of the Small Magellanic Cloud. We followed the outburst of the system with NICER which led to the discovery of X-ray pul sations with a period of 9.3 s. We analyzed simultaneous X-ray data obtained with NuSTAR and NICER allowing us to characterize the spectrum and provide an accurate estimate of its bolometric luminosity. During the outburst the maximum broadband X-ray luminosity of the system reached $1-2times10^{39}$ erg/s, thus exceeding by about one order of magnitude the Eddington limit for a typical 1.4 $M_{odot}$ mass neutron star (NS). Monitoring observations with Fermi/GBM and NICER allowed us to study the spin evolution of the NS and compare it with standard accretion torque models. We found that the NS magnetic field should be of the order of $3times10^{12}$ G. We conclude that RX J0209.6-7427 exhibited one of the brightest outbursts observed from a Be X-ray binary pulsar in the Magellanic Clouds, reaching similar luminosity level to the 2016 outburst of SMC X-3. Despite the super-Eddington luminosity of RX J0209.6-7427, the NS appears to have only a moderate magnetic field strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا