ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoding Spiking Mechanism with Dynamic Learning on Neuron Population

91   0   0.0 ( 0 )
 نشر من قبل Zhijie Chen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

A main concern in cognitive neuroscience is to decode the overt neural spike train observations and infer latent representations under neural circuits. However, traditional methods entail strong prior on network structure and hardly meet the demand for real spike data. Here we propose a novel neural network approach called Neuron Activation Network that extracts neural information explicitly from single trial neuron population spike trains. Our proposed method consists of a spatiotemporal learning procedure on sensory environment and a message passing mechanism on population graph, followed by a neuron activation process in a recursive fashion. Our model is aimed to reconstruct neuron information while inferring representations of neuron spiking states. We apply our model to retinal ganglion cells and the experimental results suggest that our model holds a more potent capability in generating neural spike sequences with high fidelity than the state-of-the-art methods, as well as being more expressive and having potential to disclose latent spiking mechanism. The source code will be released with the final paper.



قيم البحث

اقرأ أيضاً

Despite rapid advances in machine learning tools, the majority of neural decoding approaches still use traditional methods. Modern machine learning tools, which are versatile and easy to use, have the potential to significantly improve decoding perfo rmance. This tutorial describes how to effectively apply these algorithms for typical decoding problems. We provide descriptions, best practices, and code for applying common machine learning methods, including neural networks and gradient boosting. We also provide detailed comparisons of the performance of various methods at the task of decoding spiking activity in motor cortex, somatosensory cortex, and hippocampus. Modern methods, particularly neural networks and ensembles, significantly outperform traditional approaches, such as Wiener and Kalman filters. Improving the performance of neural decoding algorithms allows neuroscientists to better understand the information contained in a neural population and can help advance engineering applications such as brain machine interfaces.
Several studies with brain signals suggested that bottom-up and top-down influences are exerted through distinct frequency bands among visual cortical areas. It has been recently shown that theta and gamma rhythms subserve feedforward, whereas the fe edback influence is dominated by the alpha-beta rhythm in primates. A few theoretical models for reproducing these effects have been proposed so far. Here we show that a simple but biophysically plausible two-network motif composed of spiking-neuron models and chemical synapses can exhibit feedforward and feedback influences through distinct frequency bands. Differently from previous studies, this kind of model allows us to study directed influences not only at the population level, by using a proxy for the local field potential, but also at the cellular level, by using the neuronal spiking series.
114 - Emily Toomey , Ken Segall , 2019
With the rising societal demand for more information-processing capacity with lower power consumption, alternative architectures inspired by the parallelism and robustness of the human brain have recently emerged as possible solutions. In particular, spiking neural networks (SNNs) offer a bio-realistic approach, relying on pulses analogous to action potentials as units of information. While software encoded networks provide flexibility and precision, they are often computationally expensive. As a result, hardware SNNs based on the spiking dynamics of a device or circuit represent an increasingly appealing direction. Here, we propose to use superconducting nanowires as a platform for the development of an artificial neuron. Building on an architecture first proposed for Josephson junctions, we rely on the intrinsic nonlinearity of two coupled nanowires to generate spiking behavior, and use electrothermal circuit simulations to demonstrate that the nanowire neuron reproduces multiple characteristics of biological neurons. Furthermore, by harnessing the nonlinearity of the superconducting nanowires inductance, we develop a design for a variable inductive synapse capable of both excitatory and inhibitory control. We demonstrate that this synapse design supports direct fanout, a feature that has been difficult to achieve in other superconducting architectures, and that the nanowire neurons nominal energy performance is competitive with that of current technologies.
Coarse-graining microscopic models of biological neural networks to obtain mesoscopic models of neural activities is an essential step towards multi-scale models of the brain. Here, we extend a recent theory for mesoscopic population dynamics with st atic synapses to the case of dynamic synapses exhibiting short-term plasticity (STP). Under the assumption that spike arrivals at synapses have Poisson statistics, we derive analytically stochastic mean-field dynamics for the effective synaptic coupling between finite-size populations undergoing Tsodyks-Markram STP. The novel mean-field equations account for both finite number of synapses and correlations between the neurotransmitter release probability and the fraction of available synaptic resources. Comparisons with Monte Carlo simulations of the microscopic model show that in both feedforward and recurrent networks the mesoscopic mean-field model accurately reproduces stochastic realizations of the total synaptic input into a postsynaptic neuron and accounts for stochastic switches between Up and Down states as well as for population spikes. The extended mesoscopic population theory of spiking neural networks with STP may be useful for a systematic reduction of detailed biophysical models of cortical microcircuits to efficient and mathematically tractable mean-field models.
Neural population activity is theorized to reflect an underlying dynamical structure. This structure can be accurately captured using state space models with explicit dynamics, such as those based on recurrent neural networks (RNNs). However, using r ecurrence to explicitly model dynamics necessitates sequential processing of data, slowing real-time applications such as brain-computer interfaces. Here we introduce the Neural Data Transformer (NDT), a non-recurrent alternative. We test the NDTs ability to capture autonomous dynamical systems by applying it to synthetic datasets with known dynamics and data from monkey motor cortex during a reaching task well-modeled by RNNs. The NDT models these datasets as well as state-of-the-art recurrent models. Further, its non-recurrence enables 3.9ms inference, well within the loop time of real-time applications and more than 6 times faster than recurrent baselines on the monkey reaching dataset. These results suggest that an explicit dynamics model is not necessary to model autonomous neural population dynamics. Code: https://github.com/snel-repo/neural-data-transformers

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا