ﻻ يوجد ملخص باللغة العربية
Data privacy is unarguably of extreme importance. Nonetheless, there exist various daunting challenges to safe-guarding data privacy. These challenges stem from the fact that data owners have little control over their data once it has transgressed their local storage and been managed by third parties whose trustworthiness is questionable at times. Our work seeks to enhance data privacy by constructing a self-expiring data capsule. Sensitive data is encapsulated into a capsule which is associated with an access policy an expiring condition. The former indicates eligibility of functions that can access the data, and the latter dictates when the data should become inaccessible to anyone, including the previously eligible functions. Access to the data capsule, as well as its dismantling once the expiring condition is met, are governed by a committee of independent and mutually distrusting nodes. The pivotal contribution of our work is an integration of hardware primitive, state machine replication and threshold secret sharing in the design of the self-expiring data encapsulation framework. We implement the proposed framework in a system called TEEKAP. Our empirical experiments conducted on a realistic deployment setting with the access control committee spanning across four geographical regions reveal that TEEKAP can process access requests at scale with sub-second latency.
ARM TrustZone is the de-facto hardware TEE implementation on mobile devices like smartphones. As a vendor-centric TEE, TrustZone greatly overlooks the strong protection demands and requirements from the App developers. Several security solutions have
Trusted Execution Environments (TEEs) are used to protect sensitive data and run secure execution for security-critical applications, by providing an environment isolated from the rest of the system. However, over the last few years, TEEs have been p
Machine learning models based on Deep Neural Networks (DNNs) are increasingly deployed in a wide range of applications ranging from self-driving cars to COVID-19 treatment discovery. To support the computational power necessary to learn a DNN, cloud
In-storage computing with modern solid-state drives (SSDs) enables developers to offload programs from the host to the SSD. It has been proven to be an effective approach to alleviate the I/O bottleneck. To facilitate in-storage computing, many frame
Cyber attacks are becoming more frequent and sophisticated, introducing significant challenges for organizations to protect their systems and data from threat actors. Today, threat actors are highly motivated, persistent, and well-founded and operate