ترغب بنشر مسار تعليمي؟ اضغط هنا

A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity

88   0   0.0 ( 0 )
 نشر من قبل Yifan Cui
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally be ruled out with certainty in observational studies or randomized trials subject to noncompliance, we propose a general instrumental variable approach to learning optimal treatment regimes under endogeneity. Specifically, we establish identification of both value function $E[Y_{mathcal{D}(L)}]$ for a given regime $mathcal{D}$ and optimal regimes $text{argmax}_{mathcal{D}} E[Y_{mathcal{D}(L)}]$ with the aid of a binary instrumental variable, when no unmeasured confounding fails to hold. We also construct novel multiply robust classification-based estimators. Furthermore, we propose to identify and estimate optimal treatment regimes among those who would comply to the assigned treatment under a standard monotonicity assumption. In this latter case, we establish the somewhat surprising result that complier optimal regimes can be consistently estimated without directly collecting compliance information and therefore without the complier average treatment effect itself being identified. Our approach is illustrated via extensive simulation studies and a data application on the effect of child rearing on labor participation.



قيم البحث

اقرأ أيضاً

78 - Shuxiao Chen , Bo Zhang 2021
Estimating dynamic treatment regimes (DTRs) from retrospective observational data is challenging as some degree of unmeasured confounding is often expected. In this work, we develop a framework of estimating properly defined optimal DTRs with a time- varying instrumental variable (IV) when unmeasured covariates confound the treatment and outcome, rendering the potential outcome distributions only partially identified. We derive a novel Bellman equation under partial identification, use it to define a generic class of estimands (termed IV-optimal DTRs), and study the associated estimation problem. We then extend the IV-optimality framework to tackle the policy improvement problem, delivering IV-improved DTRs that are guaranteed to perform no worse and potentially better than a pre-specified baseline DTR. Importantly, our IV-improvement framework opens up the possibility of strictly improving upon DTRs that are optimal under the no unmeasured confounding assumption (NUCA). We demonstrate via extensive simulations the superior performance of IV-optimal and IV-improved DTRs over the DTRs that are optimal only under the NUCA. In a real data example, we embed retrospective observational registry data into a natural, two-stage experiment with noncompliance using a time-varying IV and estimate useful IV-optimal DTRs that assign mothers to high-level or low-level neonatal intensive care units based on their prognostic variables.
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifia ble under mild conditions. In this paper, we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges for causal estimation with a binary outcome, and show that surprisingly, it can be more difficult than the case with a continuous outcome. We propose novel modeling and estimating procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness or efficiency. Our approach is illustrated via simulation studies and a real data analysis.
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational s tudies. Motivated by the recent proposed proximal causal inference, we develop several proximal learning approaches to estimating optimal individualized treatment regimes (ITRs) in the presence of unmeasured confounding. In particular, we establish several identification results for different classes of ITRs, exhibiting the trade-off between the risk of making untestable assumptions and the value function improvement in decision making. Based on these results, we propose several classification-based approaches to finding a variety of restricted in-class optimal ITRs and develop their theoretical properties. The appealing numerical performance of our proposed methods is demonstrated via an extensive simulation study and one real data application.
Unmeasured confounding is a threat to causal inference and individualized decision making. Similar to Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020); Han (2020a), we consider the problem of identification of optimal individualized treatment regi mes with a valid instrumental variable. Han (2020a) provided an alternative identifying condition of optimal treatment regimes using the conditional Wald estimand of Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020) when treatment assignment is subject to endogeneity and a valid binary instrumental variable is available. In this note, we provide a necessary and sufficient condition for identification of optimal treatment regimes using the conditional Wald estimand. Our novel condition is necessarily implied by those of Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020); Han (2020a) and may continue to hold in a variety of potential settings not covered by prior results.
The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of a biomarker for individuals in the healthy and diseased groups via a semiparametric density ratio model. Based on this model, we use the maximum empirical likelihood method to estimate the Youden index and the optimal cutoff point. We further establish the asymptotic normality of the proposed estimators and construct valid confidence intervals for the Youden index and the corresponding optimal cutoff point. The proposed method automatically covers both cases when there is no lower limit of detection (LLOD) and when there is a fixed and finite LLOD for the biomarker. Extensive simulation studies and a real data example are used to illustrate the effectiveness of the proposed method and its advantages over the existing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا