ترغب بنشر مسار تعليمي؟ اضغط هنا

Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Explanation Generation

148   0   0.0 ( 0 )
 نشر من قبل Martin Andrews
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The TextGraphs-13 Shared Task on Explanation Regeneration asked participants to develop methods to reconstruct gold explanations for elementary science questions. Red Dragon AIs entries used the language of the questions and explanation text directly, rather than a constructing a separate graph-like representation. Our leaderboard submission placed us 3rd in the competition, but we present here three methods of increasing sophistication, each of which scored successively higher on the test set after the competition close.



قيم البحث

اقرأ أيضاً

Explainable question answering for science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. To counter the limitations of methods that view each query-document pair in isolation, we propose the LST M-Interleaved Transformer which incorporates cross-document interactions for improved multi-hop ranking. The LIT architecture can leverage prior ranking positions in the re-ranking setting. Our model is competitive on the current leaderboard for the TextGraphs 2020 shared task, achieving a test-set MAP of 0.5607, and would have gained third place had we submitted before the competition deadline. Our code implementation is made available at https://github.com/mdda/worldtree_corpus/tree/textgraphs_2020
The CL-SciSumm Shared Task is the first medium-scale shared task on scientific document summarization in the computational linguistics~(CL) domain. In 2019, it comprised three tasks: (1A) identifying relationships between citing documents and the ref erred document, (1B) classifying the discourse facets, and (2) generating the abstractive summary. The dataset comprised 40 annotated sets of citing and reference papers of the CL-SciSumm 2018 corpus and 1000 more from the SciSummNet dataset. All papers are from the open access research papers in the CL domain. This overview describes the participation and the official results of the CL-SciSumm 2019 Shared Task, organized as a part of the 42nd Annual Conference of the Special Interest Group in Information Retrieval (SIGIR), held in Paris, France in July 2019. We compare the participating systems in terms of two evaluation metrics and discuss the use of ROUGE as an evaluation metric. The annotated dataset used for this shared task and the scripts used for evaluation can be accessed and used by the community at: https://github.com/WING-NUS/scisumm-corpus.
134 - Shilei Liu , Yu Guo , Bochao Li 2020
This paper describes our submission to subtask a and b of SemEval-2020 Task 4. For subtask a, we use a ALBERT based model with improved input form to pick out the common sense statement from two statement candidates. For subtask b, we use a multiple choice model enhanced by hint sentence mechanism to select the reason from given options about why a statement is against common sense. Besides, we propose a novel transfer learning strategy between subtasks which help improve the performance. The accuracy scores of our system are 95.6 / 94.9 on official test set and rank 7$^{th}$ / 2$^{nd}$ on Post-Evaluation leaderboard.
We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the final six were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT.
In this paper, we propose to formulate the task-oriented dialogue system as the purely natural language generation task, so as to fully leverage the large-scale pre-trained models like GPT-2 and simplify complicated delexicalization prepossessing. Ho wever, directly applying this method heavily suffers from the dialogue entity inconsistency caused by the removal of delexicalized tokens, as well as the catastrophic forgetting problem of the pre-trained model during fine-tuning, leading to unsatisfactory performance. To alleviate these problems, we design a novel GPT-Adapter-CopyNet network, which incorporates the lightweight adapter and CopyNet modules into GPT-2 to achieve better performance on transfer learning and dialogue entity generation. Experimental results conducted on the DSTC8 Track 1 benchmark and MultiWOZ dataset demonstrate that our proposed approach significantly outperforms baseline models with a remarkable performance on automatic and human evaluations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا