ﻻ يوجد ملخص باللغة العربية
Graphene offers a possibility for actively controlling plasmon confinement and propagation by tailoring its spatial conductivity pattern. However, implementation of this concept has been hampered because uncontrollable plasmon reflection is easily induced by inhomogeneous dielectric environment. In this work, we demonstrate full electrical control of plasmon reflection/transmission at electronic boundaries induced by a zinc-oxide-based dual gate, which is designed to minimize the dielectric modulation. Using Fourier-transform infrared spectroscopy, we show that the plasmon reflection can be varied continuously with the carrier density difference between the adjacent regions. By utilizing this functionality, we show the ability to control size, position, and frequency of plasmon cavities. Our approach can be applied to various types of plasmonic devices, paving the way for implementing a programmable plasmonic circuit.
We present an electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth and we exploit it to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal-gr
We report a THz reflectarray metasurface which uses graphene as active element to achieve beam steering, shaping and broadband phase modulation. This is based on the creation of a voltage controlled reconfigurable phase hologram, which can impart dif
Transistor structures comprising graphene and sub-wavelength metal gratings hold a great promise for plasmon-enhanced terahertz detection. Despite considerable theoretical effort, little experimental evidence for terahertz plasmons in such structures
Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental importa
Electrostatic gating and optical pumping schemes enable efficient time modulation of graphenes free carrier density, or Drude weight. We develop a theory for plasmon propagation in graphene under temporal modulation. When the modulation is on the tim