ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation in Isolated Dwarf Galaxies Hosting Tidal Debris: Extending the Dwarf-Dwarf Merger Sequence

136   0   0.0 ( 0 )
 نشر من قبل Erin Kado-Fong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Like massive galaxies, dwarf galaxies are expected to undergo major mergers with other dwarfs. However, the end state of these mergers and the role that merging plays in regulating dwarf star formation is uncertain. Using imaging from the Hyper Suprime-Cam Subaru Strategic program, we construct a sample of dwarf-dwarf mergers and examine the star formation and host properties of the merging systems. These galaxies are selected via an automated detection algorithm from a sample of 6875 spectroscopically selected isolated dwarf galaxies at $z<0.12$ and $log(M_star/M_odot)<9.6$ from the Galaxy and Mass Assembly (GAMA) and Sloan Digital Sky Survey (SDSS) spectroscopic campaigns. We find a total tidal feature detection fraction of 3.29% (6.1% when considering only galaxies at $z<0.05$). The tidal feature detection fraction rises strongly as a function of star formation activity; 15%-20% of galaxies with extremely high H$alpha$ equivalent width (H$alpha$ EW > 250 Angstrom) show signs of tidal debris. Galaxies that host tidal debris are also systematically bluer than the average galaxy at fixed stellar mass. These findings extend the observed dwarf-dwarf merger sequence with a significant sample of dwarf galaxies, indicating that star formation triggered in mergers between dwarf galaxies continues after coalescence.



قيم البحث

اقرأ أيضاً

We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu de below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
135 - Erin Kimbro 2021
Nearby, low-metallicity dwarf starburst galaxies hosting active galactic nuclei (AGNs) offer the best local analogs to study the early evolution of galaxies and their supermassive black holes (BHs). Here we present a detailed multi-wavelength investi gation of star formation and BH activity in the low-metallicity dwarf-dwarf galaxy merger Mrk 709. Using Hubble Space Telescope H$alpha$ and continuum imaging combined with Keck spectroscopy, we determine that the two dwarf galaxies are likely in the early stages of a merger (i.e., their first pass) and discover a spectacular $sim 10$ kpc-long string of young massive star clusters ($t lesssim 10$ Myr; $M_star gtrsim 10^5~M_odot$) between the galaxies triggered by the interaction. We find that the southern galaxy, Mrk 709 S, is undergoing a clumpy mode of star formation resembling that seen in high-redshift galaxies, with multiple young clusters/clumps having stellar masses between $10^7$ and $10^8~M_odot$. Furthermore, we present additional evidence for a low-luminosity AGN in Mrk 709 S (first identified by Reines et al. 2014 (arXiv:1405.0278) using radio and X-ray observations), including the detection of the coronal [Fe X] optical emission line. The work presented here provides a unique glimpse into processes key to hierarchical galaxy formation and BH growth in the early Universe.
110 - Cody M. Rude 2019
Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effect s than giant systems. Combined luminosity functions (LFs) in the r- and u-band of 15 galaxy clusters were constructed using archival data from the Canada-France-Hawaii Telescope. LFs were measured as a function of cluster-centric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing cluster-centric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with cluster-centric radius compared to the r-band. The dG blue fraction was found to be ~2 times larger than the giant galaxy blue fraction over all cluster-centric distance (~5sigma level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ~2 times greater in the inner cluster region compared to the outskirts (2.8sigma level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 < r/r_200 < 1.0) is steeper than the SDSS field LF, while the u-band LF is marginally steeper at the 2.5sigma level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy-galaxy interactions.
160 - Nils Bergvall 2011
Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.
We present results from our Giant Metrewave Radio Telescope (GMRT) HI observations of the Arp 305 system. The system consists of two interacting spiral galaxies NGC 4016 and NGC 4017, a large amount of resultant tidal debris and a prominent tidal dwa rf galaxy (TDG) candidate projected within the tidal bridge between the two principal galaxies. Our higher resolution GMRT HI mapping, compared to previous observations, allowed detailed study of smaller scale features. Our HI analysis supports the conclusion in Hancock et al. (2009) that the most recent encounter between the pair occurred $sim$ 4 $times$ 10$^8$ yrs ago. The GMRT observations also show HI features near NGC 4017 which may be remnants of an earlier encounter between the two galaxies. The HI properties of the Bridge TDG candidate include: M(HI) $sim$ 6.6 $times$ 10$^8$ msolar and V(HI) = 3500$pm$ 7 km/s, which is in good agreement with the velocities of the parent galaxies. Additionally the TDGs HI linewidth of 30 km/s and a modest velocity gradient together with its SFR of 0.2 msolar/yr add to the evidence favouring the bridge candidate being a genuine TDG. The Bridge TDGs textit{Spitzer} 3.6 $mu$m and 4.5 $mu$m counterparts with a [3.6]--[4.5] colour $sim$ -0.2 mag suggests stellar debris may have seeded its formation. Future spectroscopic observations could confirm this formation scenario and provide the metallicity which is a key criteria for the validation for TDG candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا