One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d $N=2$ SCFT $T[M_3]$ --- or, rather, a collection of SCFTs as we refer to it in the paper --- for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on $M_3$ and, secondly, is not limited to a particular supersymmetric partition function of $T[M_3]$. In particular, we propose to describe such collection of SCFTs in terms of 3d $N=2$ gauge theories with non-linear matter fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of $T[M_3]$, and propose new tools to compute more recent $q$-series invariants $hat Z (M_3)$ in the case of manifolds with $b_1 > 0$. Although we use genus-1 mapping tori as our case study, many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.