ﻻ يوجد ملخص باللغة العربية
One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d $N=2$ SCFT $T[M_3]$ --- or, rather, a collection of SCFTs as we refer to it in the paper --- for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on $M_3$ and, secondly, is not limited to a particular supersymmetric partition function of $T[M_3]$. In particular, we propose to describe such collection of SCFTs in terms of 3d $N=2$ gauge theories with non-linear matter fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of $T[M_3]$, and propose new tools to compute more recent $q$-series invariants $hat Z (M_3)$ in the case of manifolds with $b_1 > 0$. Although we use genus-1 mapping tori as our case study, many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.
We explore aspects of the correspondence between Seifert 3-manifolds and 3d $mathcal{N}=2$ supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of su
We find and propose an explanation for a large variety of modularity-related symmetries in problems of 3-manifold topology and physics of 3d $mathcal{N}=2$ theories where such structures a priori are not manifest. These modular structures include: mo
By incorporating higher-form symmetries, we propose a refined definition of the theories obtained by compactification of the 6d $(2,0)$ theory on a three-manifold $M_3$. This generalization is applicable to both the 3d $mathcal{N}=2$ and $mathcal{N}=
The 2d gauged linear sigma model (GLSM) gives a UV model for quantum cohomology on a Kahler manifold X, which is reproduced in the IR limit. We propose and explore a 3d lift of this correspondence, where the UV model is the N=2 supersymmetric 3d gaug
We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symme