ﻻ يوجد ملخص باللغة العربية
Silicon photomultipliers (SiPMs) have become popular light conversion devices in recent years due to their low bias voltage and sensitivity to wavelengths emitted from common scintillating materials. These properties make them particularly attractive for resource-constrained missions such as space-based detector applications. However the space radiation environment is known to be particularly harsh on semiconductor devices, where high particle fluences can degrade performance over time. The radiation hardness of a particular SiPM, manufactured by ON Semiconductor (formally SensL), has yet to be studied with high energy protons, which are native to the space radiation environment. To study these effects we have irradiated groups of two SiPMs to four different fluences of 800 MeV protons delivered by the accelerator at the Los Alamos Neutron Science Center. Fluences of $1.68times10^{9}$, $1.73times10^{10}$, $6.91times10^{10}$, and $1.73times10^{11}$ protons cm$^{-2}$, and their corresponding estimated doses of $0.15$, $1.55$, $6.19$, and $15.5$ kRad, were chosen based on estimates of the potential exposure a SiPM might receive during an interplanetary space mission lasting 10 years. We report the effects these doses have on dark current and the self-annealing time.
Silicon Photomultipliers with cell-pitch ranging from 12 $mu$m to 20 $mu$m were tested against neutron irradiation at moderate fluences to study their performance for calorimetric applications. The photosensors were developed by FBK employing the RGB
The Mu2e calorimeter is composed of 1400 un-doped CsI crystals, coupled to large area UV extended Silicon Photomultipliers (SiPMs), arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position reso
Cerium-doped Cs$_2$LiYCl$_6$ (CLYC) and Cs$_2$LiLaBr$_x$Cl$_{6-x}$ (CLLBC) are scintillators in the elpasolite family that are attractive options for resource-constrained applications due to their ability to detect both gamma rays and neutrons within
We study the radiation effects of the Low Gain Avalanche Detector (LGAD) sensors developed by the Institute of High Energy Physics (IHEP) and the Novel Device Laboratory (NDL) of Beijing Normal University in China. These new sensors have been irradia
Novel generation of silicon-based photodetectors are attractive alternatives to the traditional phototubes. They offer significant advantages but they present new challenges too. Presence of afterpulses may affect many characteristics of the photodet