ﻻ يوجد ملخص باللغة العربية
Couplings of a system to other degrees of freedom (that is, environmental degrees of freedom) lead to energy dissipation when the number of environmental degrees of freedom is large enough. Here we discuss quantal treatments for such energy dissipation. To this end, we discuss two different time-dependent methods. One is to introduce an effective time-dependent Hamiltonian, which leads to a classical equation of motion as a relationship among expectation values of quantum operators. We apply this method to a heavy-ion fusion reaction and discuss the role of dissipation on the penetrability of the Coulomb barrier. The other method is to start with a Hamiltonian with environmental degrees of freedom and derive an equation which the system degree of freedom obeys. For this, we present a new efficient method to solve coupled-channels equations, which can be easily applied even when the dimension of the coupled-channels equations is huge.
Photosynthesis is the basic process used by plants to convert light energy in reaction centers into chemical energy. The high efficiency of this process is not yet understood today. Using the formalism for the description of open quantum systems by m
In this Colloquium, the wavefunction-based Multiconfigurational Time-Dependent Hartree approaches to the dynamics of indistinguishable particles (MCTDH-F for Fermions and MCTDH-B for Bosons) are reviewed. MCTDH-B and MCTDH-F or, together, MCTDH-X are
Time-Dependent Density Functional Theory (TDDFT) has recently been extended to describe many-body open quantum systems (OQS) evolving under non-unitary dynamics according to a quantum master equation. In the master equation approach, electronic excit
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here we demonstrate numerically, that they can be used for a much broader
We establish the path integral approach for the time-dependent heat exchange of an externally driven quantum system coupled to a thermal reservoir. We derive the relevant influence functional and present an exact formal expression for the moment gene