ترغب بنشر مسار تعليمي؟ اضغط هنا

On coherence and the transverse spatial extent of a neutron wave packet

106   0   0.0 ( 0 )
 نشر من قبل Charles Majkrzak
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. F. Majkrzak




اسأل ChatGPT حول البحث

In the analysis of neutron scattering measurements of condensed matter structure, it normally suffices to treat the incident and scattered neutron beams as if composed of incoherent distributions of plane waves with wavevectors of different magnitudes and directions which are taken to define an instrumental resolution. However, despite the wide-ranging applicability of this conventional treatment, there are cases in which the wave function of an individual neutron in the beam must be described more accurately by a spatially localized packet, in particular with respect to its transverse extent normal to its mean direction of propagation. One such case involves the creation of orbital angular momentum (OAM) states in a neutron via interaction with a material device of a given size. It is shown in the work reported here that there exist two distinct measures of coherence of special significance and utility for describing neutron beams in scattering studies of materials in general. One measure corresponds to the coherent superposition of basis functions and their wavevectors which constitute each individual neutron packet state function whereas the other measure can be associated with an incoherent distribution of mean wavevectors of the individual neutron packets in a beam. Both the distribution of the mean wavevectors of individual packets in the beam as well as the wavevector components of the superposition of basis functions within an individual packet can contribute to the conventional notion of instrumental resolution. However, it is the transverse spatial extent of packet wavefronts alone that determines the area within which a coherent scattering process can occur in the first place. This picture is shown to be consistent with standard quantum theory. It is also demonstrated that these two measures of coherence can be distinguished from one another experimentally.



قيم البحث

اقرأ أيضاً

We present a detailed study of the spatial resolution of our time-resolved neutron imaging detector utilizing a new neutron position reconstruction method that improves both spatial resolution and event reconstruction efficiency. Our prototype detect or system, employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system, combines 100{mu}m-level spatial and sub-{mu}s time resolutions with excellent gamma rejection and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. From data taken at the Materials and Life Science Experimental Facility within the Japan Proton Accelerator Research Complex (J-PARC), the spatial resolution was found to be approximately Gaussian with a sigma of 103.48 +/- 0.77 {mu}m (after correcting for beam divergence). This is a significant improvement over that achievable with our previous reconstruction method (334 +/- 13 {mu}m), and compares well with conventional neutron imaging detectors and with other high-rate detectors currently under development. Further, a detector simulation indicates that a spatial resolution of less than 60 {mu}m may be possible with optimization of the gas characteristics and {mu}PIC structure. We also present an example of imaging combined with neutron resonance absorption spectroscopy.
We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{mu}m-level spatial and sub-{mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In the present paper, we introduce the detector system and present several test measurements performed at NOBORU (BL10), J-PARC to demonstrate the capabilities of our prototype. We also discuss future improvements to the spatial resolution and rate performance.
We have developed a prototype time-resolved neutron imaging detector employing the micro-pixel chamber (muPIC), a micro-pattern gaseous detector, coupled with a field programmable gate array-based data acquisition system for applications in neutron r adiography at high-intensity neutron sources. The prototype system, with an active area of 10cm x 10cm and operated at a gas pressure of 2 atm, measures both the energy deposition (via time-over-threshold) and 3-dimensional track of each neutron-induced event, allowing the reconstruction of the neutron interaction point with improved accuracy. Using a simple position reconstruction algorithm, a spatial resolution of 349 +/- 36 microns was achieved, with further improvement expected. The detailed tracking allows strong rejection of background gamma-rays, resulting in an effective gamma sensitivity of 10^-12 or less, coupled with stable, robust neutron identification. The detector also features a time resolution of 0.6 microseconds.
The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k, when it is prepared in a typical instrument used to study the structure of materials in th in film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutrons effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary non-specular measurements of the widths of grating reflections were also performed which corroborate the specular results. (Part I principally describes measurements interpreted according to the theoretical picture presented in Part II.) Each grating was fabricated by lift-off photo-lithography patterning of a nickel film (approximately 1000 Angstroms thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 microns (5 microns Ni stripe, 5 microns intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.
4D-STEM, in which the 2D diffraction plane is captured for each 2D scan position in the scanning transmission electron microscope (STEM) using a pixelated detector, is complementing and increasingly replacing existing imaging approaches. However, at present the speed of those detectors, although having drastically improved in the recent years, is still 100 to 1,000 times slower than the current PMT technology operators are used to. Regrettably, this means environmental scanning-distortion often limits the overall performance of the recorded 4D data. Here we present an extension of existing STEM distortion correction techniques for the treatment of 4D-data series. Although applicable to 4D-data in general, we use electron ptychography and electric-field mapping as model cases and demonstrate an improvement in spatial-fidelity, signal-to-noise ratio (SNR), phase-precision and spatial-resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا